On a theorem of Jörgens and Chernoff concerning essential self-adjointness of Dirac operators.
Two simple methods for approximate determination of eigenvalues and eigenvectors of linear self-adjoint operators are considered in the following two cases: (i) lower-upper bound of the spectrum of is an isolated point of ; (ii) (not necessarily an isolated point of with finite multiplicity) is an eigenvalue of .
We consider a Schrödinger-type differential expression , where is a -bounded Hermitian connection on a Hermitian vector bundle of bounded geometry over a manifold of bounded geometry with metric and positive -bounded measure , and is a locally integrable section of the bundle of endomorphisms of . We give a sufficient condition for -sectoriality of a realization of in . In the proof we use generalized Kato’s inequality as well as a result on the positivity of satisfying the...
In the present work, using a formula describing all scalar spectral functions of a Carleman operator of defect indices in the Hilbert space that we obtained in a previous paper, we derive certain results concerning the localization of the spectrum of quasi-selfadjoint extensions of the operator .
Let A and B be two -non necessarily bounded- normal operators. We give new conditions making their product normal. We also generalize a result by Deutsch et al on normal products of matrices.