On a theorem of Jörgens and Chernoff concerning essential self-adjointness of Dirac operators.
Page 1 Next
P.A. Rejto, J.J. Landgren (1981)
Journal für die reine und angewandte Mathematik
Konrad Schmüdgen (1986)
Manuscripta mathematica
M. Klaus (1983)
Annales de l'I.H.P. Physique théorique
Josef Kolomý (1981)
Aplikace matematiky
Two simple methods for approximate determination of eigenvalues and eigenvectors of linear self-adjoint operators are considered in the following two cases: (i) lower-upper bound of the spectrum of is an isolated point of ; (ii) (not necessarily an isolated point of with finite multiplicity) is an eigenvalue of .
Günter Stolz, Thomas Poerschke (1993)
Mathematische Zeitschrift
Ian Knowles (1977)
Mathematische Annalen
Takashi Ichinose, Tetsuo Tsuchida (1993)
Forum mathematicum
Sever Silvestru Dragomir, Bertram Mond, Josip E. Pečarić (1995)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Milatovic, Ognjen (2003)
International Journal of Mathematics and Mathematical Sciences
Ognjen Milatovic (2004)
Commentationes Mathematicae Universitatis Carolinae
We consider a Schrödinger-type differential expression , where is a -bounded Hermitian connection on a Hermitian vector bundle of bounded geometry over a manifold of bounded geometry with metric and positive -bounded measure , and is a locally integrable section of the bundle of endomorphisms of . We give a sufficient condition for -sectoriality of a realization of in . In the proof we use generalized Kato’s inequality as well as a result on the positivity of satisfying the...
Heinz-Willi Goelden (1977)
Mathematische Zeitschrift
Palle E.T. Jorgensen (1983)
Mathematische Zeitschrift
Niels Skovhus Poulsen (1973)
Mathematica Scandinavica
Hubert Kalf, Rainer Hempel, Andreas M. Hinz (1987)
Mathematische Annalen
Ian Knowles (1978)
Mathematische Annalen
N. Anghel (1993)
Geometric and functional analysis
S. M. Bahri (2012)
Mathematica Bohemica
In the present work, using a formula describing all scalar spectral functions of a Carleman operator of defect indices in the Hilbert space that we obtained in a previous paper, we derive certain results concerning the localization of the spectrum of quasi-selfadjoint extensions of the operator .
Karel Najzar (1970)
Commentationes Mathematicae Universitatis Carolinae
Mohammed Hichem Mortad (2013)
Concrete Operators
Let A and B be two -non necessarily bounded- normal operators. We give new conditions making their product normal. We also generalize a result by Deutsch et al on normal products of matrices.
J. Weidmann, J. Brasche, H. Neidhardt (1993)
Mathematische Zeitschrift
Page 1 Next