Mean Oscillation of Functions and the Paley-Wiener Space.
L. de Branges has originated a viewpoint one of whose repercussions has been the detailed analysis of certain Hilbert spaces of holomorphic functions contained within the Hardy space H2 of the unit disk (...).
We study multipliers M (bounded operators commuting with translations) on weighted spaces L ω p (ℝ), and establish the existence of a symbol µM for M, and some spectral results for translations S t and multipliers. We also study operators T on the weighted space L ω p (ℝ+) commuting either with the right translations S t , t ∈ ℝ+, or left translations P +S −t , t ∈ ℝ+, and establish the existence of a symbol µ of T. We characterize completely the spectrum σ(S t ) of the operator S t proving that...
We obtain a sufficient condition on a B(H)-valued function φ for the operator to be completely bounded on ; the Foiaş-Williams-Peller operator | St Γφ | Rφ = | | | 0 S | is then similar to a contraction. We show that if ⨍ : D → B(H) is a bounded analytic function for which and are Carleson measures, then ⨍ multiplies to itself. Such ⨍ form an algebra A, and when φ’∈ BMO(B(H)), the map is bounded . Thus we construct a functional calculus for operators of Foiaş-Williams-Peller type.
The normal cohomology functor is introduced from the category of all normal Hilbert modules over the ball algebra to the category of A(B)-modules. From the calculation of -groups, we show that every normal C(∂B)-extension of a normal Hilbert module (viewed as a Hilbert module over A(B) is normal projective and normal injective. It follows that there is a natural isomorphism between Hom of normal Shilov modules and that of their quotient modules, which is a new lifting theorem of normal Shilov...
Relations between different extensions of Toeplitz operators are studied. Additive properties of closed Toeplitz operators are investigated, in particular necessary and sufficient conditions are given and some applications in case of Toeplitz operators with polynomial symbols are indicated.