Displaying 21 – 40 of 41

Showing per page

On the spectral multiplicity of a direct sum of operators

M. T. Karaev (2006)

Colloquium Mathematicae

We calculate the spectral multiplicity of the direct sum T⊕ A of a weighted shift operator T on a Banach space Y which is continuously embedded in l p and a suitable bounded linear operator A on a Banach space X.

On totally * -paranormal operators

Eungil Ko, Hae-Won Nam, Young Oh Yang (2006)

Czechoslovak Mathematical Journal

In this paper we study some properties of a totally * -paranormal operator (defined below) on Hilbert space. In particular, we characterize a totally * -paranormal operator. Also we show that Weyl’s theorem and the spectral mapping theorem hold for totally * -paranormal operators through the local spectral theory. Finally, we show that every totally * -paranormal operator satisfies an analogue of the single valued extension property for W 2 ( D , H ) and some of totally * -paranormal operators have scalar extensions....

On truncations of Hankel and Toeplitz operators.

Aline Bonami, Joaquim Bruna (1999)

Publicacions Matemàtiques

We study the boundedness properties of truncation operators acting on bounded Hankel (or Toeplitz) infinite matrices. A relation with the Lacey-Thiele theorem on the bilinear Hilbert transform is established. We also study the behaviour of the truncation operators when restricted to Hankel matrices in the Schatten classes.

On Volterra composition operators from Bergman-type space to Bloch-type space

Zhi Jie Jiang (2011)

Czechoslovak Mathematical Journal

Let ϕ be an analytic self-mapping of 𝔻 and g an analytic function on 𝔻 . In this paper we characterize the bounded and compact Volterra composition operators from the Bergman-type space to the Bloch-type space. We also obtain an asymptotical expression of the essential norm of these operators in terms of the symbols g and ϕ .

Opening gaps in the spectrum of strictly ergodic Schrödinger operators

Artur Avila, Jairo Bochi, David Damanik (2012)

Journal of the European Mathematical Society

We consider Schrödinger operators with dynamically defined potentials arising from continuous sampling along orbits of strictly ergodic transformations. The Gap Labeling Theorem states that the possible gaps in the spectrum can be canonically labelled by an at most countable set defined purely in terms of the dynamics. Which labels actually appear depends on the choice of the sampling function; the missing labels are said to correspond to collapsed gaps. Here we show that for any collapsed gap,...

Operators on spaces of analytic functions

K. Seddighi (1994)

Studia Mathematica

Let M z be the operator of multiplication by z on a Banach space of functions analytic on a plane domain G. We say that M z is polynomially bounded if M p C p G for every polynomial p. We give necessary and sufficient conditions for M z to be polynomially bounded. We also characterize the finite-codimensional invariant subspaces and derive some spectral properties of the multiplication operator in case the underlying space is Hilbert.

Operators with absolute continuity properties: an application to quasinormality

Zenon Jan Jabłoński, Il Bong Jung, Jan Stochel (2013)

Studia Mathematica

An absolute continuity approach to quasinormality which relates the operator in question to the spectral measure of its modulus is developed. Algebraic characterizations of some classes of operators that emerge in this context are found. Various examples and counterexamples illustrating the concepts of the paper are constructed by using weighted shifts on directed trees. Generalizations of these results that cover the case of q-quasinormal operators are established.

Operators with hypercyclic Cesaro means

Fernando León-Saavedra (2002)

Studia Mathematica

An operator T on a Banach space ℬ is said to be hypercyclic if there exists a vector x such that the orbit T x n 1 is dense in ℬ. Hypercyclicity is a strong kind of cyclicity which requires that the linear span of the orbit is dense in ℬ. If the arithmetic means of the orbit of x are dense in ℬ then the operator T is said to be Cesàro-hypercyclic. Apparently Cesàro-hypercyclicity is a strong version of hypercyclicity. We prove that an operator is Cesàro-hypercyclic if and only if there exists a vector...

Currently displaying 21 – 40 of 41