Image of under the Hermite semigroup.
Page 1 Next
Radha, R., Naidu, D.Venku (2008)
International Journal of Mathematics and Mathematical Sciences
Néjib Ben Salem, Walid Nefzi (2013)
Commentationes Mathematicae Universitatis Carolinae
We propose the study of some questions related to the Dunkl-Hermite semigroup. Essentially, we characterize the images of the Dunkl-Hermite-Sobolev space, and , , under the Dunkl-Hermite semigroup. Also, we consider the image of the space of tempered distributions and we give Paley-Wiener type theorems for the transforms given by the Dunkl-Hermite semigroup.
Y. Rakotondratsimba (1995)
Publicacions Matemàtiques
By a variant of the standard good λ inequality, we prove the Muckenhoupt-Wheeden inequality for measures which are not necessarily in the Muckenhoupt class. Moreover we can deal with a general potential operator, and consequently we obtain a suitable approach to the two weight inequality for such an operator when one of the weight functions satisfies a reverse doubling condition.
J. Stochel (1982)
Studia Mathematica
David Békollé (1982)
Studia Mathematica
Bernd Carl (1985)
Annales de l'institut Fourier
The paper deals with covering problems and the degree of compactness of operators. The main part is devoted to relationships between entropy moduli and Kolmogorov (resp. Gelfand and approximation) numbers for operators which may be interpreted as counterparts to the classical Bernstein-Jackson inequalities for functions. Certain quantifications of results in the Riesz-Schauder-Theory are given. Finally, the largest distance between “the degree of approximation” and the “degree of compactness” of...
María E. Ballve, P. Jiménez Guerra (1989)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Tibilov, K.T. (1999)
Vladikavkazskiĭ Matematicheskiĭ Zhurnal
Mamontov, A.E. (2006)
Sibirskij Matematicheskij Zhurnal
Mamontov, A.E. (2006)
Sibirskij Matematicheskij Zhurnal
Wolfgang Arendt, Alexander V. Bukhvalov (1994)
Forum mathematicum
Igor Novitskiî (2005)
Open Mathematics
In this paper, we prove that every unbounded linear operator satisfying the Korotkov-Weidmann characterization is unitarily equivalent to an integral operator in L 2(R), with a bounded and infinitely smooth Carleman kernel. The established unitary equivalence is implemented by explicitly definable unitary operators.
P. Bonneau, Diedrich (1990)
Mathematische Annalen
W.J. Ricker (1992)
Semigroup forum
Rainer J. Nagel, Ulf Schlotterbeck (1972)
Mathematische Zeitschrift
Y. Meyer (1982/1983)
Séminaire Équations aux dérivées partielles (Polytechnique)
Stević, Stevo (2009)
Sibirskij Matematicheskij Zhurnal
Sunil Kumar Roy, N. D. Chakraborty (1986)
Czechoslovak Mathematical Journal
M. R. Dostanic (2007)
Revista Matemática Iberoamericana
Mosaleheh, K., Seddighi, K. (2000)
International Journal of Mathematics and Mathematical Sciences
Page 1 Next