Factorization theorem for -summing operators
We study some classes of summing operators between spaces of integrable functions with respect to a vector measure in order to prove a factorization theorem for -summing operators between Banach spaces.
We study some classes of summing operators between spaces of integrable functions with respect to a vector measure in order to prove a factorization theorem for -summing operators between Banach spaces.
Let A ∈ B(H) and B ∈ B(K). We say that A and B satisfy the Fuglede-Putnam theorem if AX = XB for some X ∈ B(K,H) implies A*X = XB*. Patel et al. (2006) showed that the Fuglede-Putnam theorem holds for class A(s,t) operators with s + t < 1 and they mentioned that the case s = t = 1 is still an open problem. In the present article we give a partial positive answer to this problem. We show that if A ∈ B(H) is a class A operator with reducing kernel and B* ∈ B(K) is a class 𝓨 operator, and AX =...
This paper shows some directions of perturbation theory for Lipschitz functions of selfadjoint and normal operators, without giving precise proofs. Some of the ideas discussed are explained informally or for the finite-dimensional case. Several unsolved problems are mentioned.