The search session has expired. Please query the service again.
Let be an infinite-dimensional complex Hilbert space and be a standard operator algebra on which is closed under the adjoint operation. It is shown that every nonlinear -Lie higher derivation of is automatically an additive higher derivation on . Moreover, is an inner -higher derivation.
Motivated by the powerful and elegant works of Miers (1971, 1973, 1978) we mainly study nonlinear Lie-type derivations of von Neumann algebras. Let 𝓐 be a von Neumann algebra without abelian central summands of type I₁. It is shown that every nonlinear Lie n-derivation of 𝓐 has the standard form, that is, can be expressed as a sum of an additive derivation and a central-valued mapping which annihilates each (n-1)th commutator of 𝓐. Several potential research topics related to our work are also...
Necessary and sufficient conditions are given for a (complete) commutative algebra that is regular in the sense of von Neumann to have a non-zero derivation. In particular, it is shown that there exist non-zero derivations on the algebra L(M) of all measurable operators affiliated with a commutative von Neumann algebra M, whose Boolean algebra of projections is not atomic. Such derivations are not continuous with respect to measure convergence. In the classical setting of the algebra S[0,1] of all...
It is shown that if A is a bounded linear operator on a complex Hilbert space, then
1/4 ||A*A + AA*|| ≤ (w(A))² ≤ 1/2 ||A*A + AA*||,
where w(·) and ||·|| are the numerical radius and the usual operator norm, respectively. These inequalities lead to a considerable improvement of the well known inequalities
1/2 ||A|| ≤ w(A) ≤ || A||.
Numerical radius inequalities for products and commutators of operators are also obtained.
Currently displaying 1 –
4 of
4