Tensor product of left n-invertible operators
A Banach space operator T ∈ has a left m-inverse (resp., an essential left m-inverse) for some integer m ≥ 1 if there exists an operator S ∈ (resp., an operator S ∈ and a compact operator K ∈ ) such that (resp., ). If is left -invertible (resp., essentially left -invertible), then the tensor product T₁ ⊗ T₂ is left (m₁ + m₂-1)-invertible (resp., essentially left (m₁ + m₂-1)-invertible). Furthermore, if T₁ is strictly left m-invertible (resp., strictly essentially left m-invertible), then...