The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We review the basic facts about the theory of paracommutators in Rn (sec S. Janson, J. Peetre, Trans. Am. Math. Soc. 305 (1988), 467504). We also give an interpretation of paracommutators from the point of view of group representations. This suggests a generalization to more general groups. Here we sketch a theory of paracommutators over stratified groups. This include the famous Heisenberg group. Finally, we take up the question of generalizing the notion of Schatten-von Neumann trace ideals to...
Let A be a semisimple Banach algebra with a linear automorphism σ and let δ: I → A be a σ-derivation, where I is an ideal of A. Then Φ(δ)(I ∩ σ(I)) = 0, where Φ(δ) is the separating space of δ. As a consequence, if I is an essential ideal then the σ-derivation δ is closable. In a prime C*-algebra, we show that every σ-derivation defined on a nonzero ideal is continuous. Finally, any linear map on a prime semisimple Banach algebra with nontrivial idempotents is continuous if it satisfies the σ-derivation...
Let T and V be two Hilbert space contractions and let X be a linear bounded operator. It was proved by C. Foiaş and J. P. Williams that in certain cases the operator block matrix R(X;T,V) (equation (1.1) below) is similar to a contraction if and only if the commutator equation X = TZ-ZV has a bounded solution Z. We characterize here the similarity to contractions of some operator matrices R(X;T,V) in terms of growth conditions or of perturbations of R(0;T,V) = T ⊕ V.
We consider a continuous derivation D on a Banach algebra 𝓐 such that p(D) is a compact operator for some polynomial p. It is shown that either 𝓐 has a nonzero finite-dimensional ideal not contained in the radical rad(𝓐) of 𝓐 or there exists another polynomial p̃ such that p̃(D) maps 𝓐 into rad(𝓐). A special case where Dⁿ is compact is discussed in greater detail.
Soient une -algèbre approximativement finie simple avec unité, le groupe des inversibles et le groupe des unitaires de . Nous avons défini dans un précédent travail un homomorphisme , appelé déterminant universel de , de sur un groupe abélien associé à . Nous montrons ici que, pour qu’un élément dans ou dans soit produit d’un nombre fini de commutateurs, il (faut et il) suffit que Ceci permet en particulier d’identifier le noyau de la projection canonique On établit aussi...
For all convolution algebras L 1[0, 1); L loc1 and A(ω) = ∩n L 1(ωn), the derivations are of the form D μ f = Xf * μ for suitable measures μ, where (Xf)(t) = tf(t). We describe the (weakly) compact as well as the (weakly) Montel derivations on these algebras in terms of properties of the measure μ. Moreover, for all these algebras we show that the extension of D μ to a natural dual space is weak-star continuous.
Currently displaying 1 –
9 of
9