Page 1

Displaying 1 – 19 of 19

Showing per page

The Banach lattice C[0,1] is super d-rigid

Y. A. Abramovich, A. K. Kitover (2003)

Studia Mathematica

The following properties of C[0,1] are proved here. Let T: C[0,1] → Y be a disjointness preserving bijection onto an arbitrary vector lattice Y. Then the inverse operator T - 1 is also disjointness preserving, the operator T is regular, and the vector lattice Y is order isomorphic to C[0,1]. In particular if Y is a normed lattice, then T is also automatically norm continuous. A major step needed for proving these properties is provided by Theorem 3.1 asserting that T satisfies some technical condition...

The order σ -complete vector lattice of AM-compact operators

Belmesnaoui Aqzzouz, Redouane Nouira (2009)

Czechoslovak Mathematical Journal

We establish necessary and sufficient conditions under which the linear span of positive AM-compact operators (in the sense of Fremlin) from a Banach lattice E into a Banach lattice F is an order σ -complete vector lattice.

Trace inequalities for spaces in spectral duality

O. Tikhonov (1993)

Studia Mathematica

Let (A,e) and (V,K) be an order-unit space and a base-norm space in spectral duality, as in noncommutative spectral theory of Alfsen and Shultz. Let t be a norm lower semicontinuous trace on A, and let φ be a nonnegative convex function on ℝ. It is shown that the mapping a → t(φ(a)) is convex on A. Moreover, the mapping is shown to be nondecreasing if so is φ. Some other similar statements concerning traces and real-valued functions are also obtained.

Currently displaying 1 – 19 of 19

Page 1