The adjoint of a positive semigroup
Page 1
J. M. A. M. Van Neerven, B. de Pagter (1994)
Compositio Mathematica
Belmesnaoui Aqzzouz, Othman Aboutafail, Taib Belghiti, Jawad H'michane (2013)
Mathematica Bohemica
We characterize Banach lattices on which every weak Banach-Saks operator is b-weakly compact.
Y. A. Abramovich, A. K. Kitover (2003)
Studia Mathematica
The following properties of C[0,1] are proved here. Let T: C[0,1] → Y be a disjointness preserving bijection onto an arbitrary vector lattice Y. Then the inverse operator is also disjointness preserving, the operator T is regular, and the vector lattice Y is order isomorphic to C[0,1]. In particular if Y is a normed lattice, then T is also automatically norm continuous. A major step needed for proving these properties is provided by Theorem 3.1 asserting that T satisfies some technical condition...
Ch.D. Aliprantis, O. Burkinshaw (1983)
Mathematische Zeitschrift
Khudalov, V.T. (1999)
Vladikavkazskiĭ Matematicheskiĭ Zhurnal
N. Nielsen (1982)
Studia Mathematica
A. W. Wickstead (1987)
Compositio Mathematica
W. Jurkat, G. Sampson (1979)
Studia Mathematica
A. C. Zaanen (1972)
Mémoires de la Société Mathématique de France
G. Groenewegen, A. van Rooij (1987)
Mathematische Zeitschrift
Belmesnaoui Aqzzouz, Redouane Nouira (2009)
Czechoslovak Mathematical Journal
We establish necessary and sufficient conditions under which the linear span of positive AM-compact operators (in the sense of Fremlin) from a Banach lattice into a Banach lattice is an order -complete vector lattice.
Ulrich Groh (1981)
Mathematische Zeitschrift
C. Bidard, M. Zerner (1991)
Mathematische Annalen
Jürgen Voigt (1988)
Mathematische Zeitschrift
Michael Lin (1998)
Studia Mathematica
Belmesnaoui Aqzzouz, Aziz Elbour, Othman Aboutafail (2011)
Commentationes Mathematicae Universitatis Carolinae
We characterize Banach lattices on which every positive almost Dunford-Pettis operator is weakly compact.
J. L. Krivine (1973/1974)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Helmut H. Schaefer (1970)
Mathematische Zeitschrift
O. Tikhonov (1993)
Studia Mathematica
Let (A,e) and (V,K) be an order-unit space and a base-norm space in spectral duality, as in noncommutative spectral theory of Alfsen and Shultz. Let t be a norm lower semicontinuous trace on A, and let φ be a nonnegative convex function on ℝ. It is shown that the mapping a → t(φ(a)) is convex on A. Moreover, the mapping is shown to be nondecreasing if so is φ. Some other similar statements concerning traces and real-valued functions are also obtained.
Page 1