Rappels sur les opérateurs sommants et radonifiants
In this paper we first consider a real-linear isometry T from a certain subspace A of C(X) (endowed with supremum norm) into C(Y) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X. The result is improved for the case where T(A) is, in addition, a complex subspace of C(Y). We also give a similar description for the case where A is a function space on X and the range of T is a real subspace of C(Y) satisfying a ceratin...
The aim of these lectures is to present a survey of some results on spaces of functions with dominating mixed smoothness. These results concern joint work with Winfried Sickel and Miroslav Krbec as well as the work which has been done by Jan Vybíral within his thesis. The first goal is to discuss the Fourier-analytical approach, equivalent characterizations with the help of derivatives and differences, local means, atomic and wavelet decompositions. Secondly, on this basis we study approximation...
Using the techniques of approximation and factorization of convolution operators we study the problem of irregular sampling of band-limited functions on a locally compact Abelian group . The results of this paper relate to earlier work by Feichtinger and Gröchenig in a similar way as Kluvánek’s work published in 1969 relates to the classical Shannon Sampling Theorem. Generally speaking we claim that reconstruction is possible as long as there is sufficient high sampling density. Moreover, the iterative...
Let be a Banach space, the algebra of bounded linear operators on and an admissible Banach ideal of . For , let and denote the left and right multiplication defined by and , respectively. In this paper, we study the transmission of some concepts related to recurrent operators between , and their elementary operators and . In particular, we give necessary and sufficient conditions for and to be sequentially recurrent. Furthermore, we prove that is recurrent if and only...
We consider the reducibility and unitary equivalence of multiplication operators on the Dirichlet space. We first characterize reducibility of a multiplication operator induced by a finite Blaschke product and, as an application, we show that a multiplication operator induced by a Blaschke product with two zeros is reducible only in an obvious case. Also, we prove that a multiplication operator induced by a multiplier ϕ is unitarily equivalent to a weighted shift of multiplicity 2 if and only if...
A criterion for reducibility of certain representations of abelian groups is established. Among the applications of this criterion, we give a positive answer to the translation invariant subspace problem for weighted spaces on locally compact abelian groups, for even weights and .
The reducing subspaces of Toeplitz operators on Dirichlet type spaces of the are described, which extends the results for the corresponding operators on Bergman spaces of the bidisk.
We investigate the reflexivity of the isometry group and the automorphism group of some important metric linear spaces and a1gebras. The paper consists of the following sections: 1. Preliminaries. 2. Sequence spaces. 3. Spaces of measurable functions. Hardy spaces. 5. Banach algebras of holomorphic functions. 6. Fréchet algebras of holomorphic functions. 7. Spaces of continuous functions.
By applying the results of the first part of the paper, we establish some Korovkin-type theorems for continuous positive linear operators in the setting of regular vector lattices of continuous functions. Moreover, we present simple methods to construct Korovkin subspaces for finitely defined operators and for the identity operator and we determine those classes of operators which admit finite-dimensional Korovkin subspaces. Finally, we give a Korovkin-type theorem for continuous positive projections....
In this paper we consider the regularity problem for the commutators where is a locally integrable function and are the Riesz transforms in the -dimensional euclidean space . More precisely, we prove that these commutators are bounded from into the Besov space for and if and only if is in the -Triebel-Lizorkin space . The reduction of our result to the case gives in particular that the commutators are bounded form into the Sobolev space if and only if is in the -Sobolev...