Displaying 2081 – 2100 of 3251

Showing per page

Real-linear isometries between certain subspaces of continuous functions

Arya Jamshidi, Fereshteh Sady (2013)

Open Mathematics

In this paper we first consider a real-linear isometry T from a certain subspace A of C(X) (endowed with supremum norm) into C(Y) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X. The result is improved for the case where T(A) is, in addition, a complex subspace of C(Y). We also give a similar description for the case where A is a function space on X and the range of T is a real subspace of C(Y) satisfying a ceratin...

Recent developments in the theory of function spaces with dominating mixed smoothness

Schmeisser, Hans-Jürgen (2007)

Nonlinear Analysis, Function Spaces and Applications

The aim of these lectures is to present a survey of some results on spaces of functions with dominating mixed smoothness. These results concern joint work with Winfried Sickel and Miroslav Krbec as well as the work which has been done by Jan Vybíral within his thesis. The first goal is to discuss the Fourier-analytical approach, equivalent characterizations with the help of derivatives and differences, local means, atomic and wavelet decompositions. Secondly, on this basis we study approximation...

Recovery of band-limited functions on locally compact Abelian groups from irregular samples

H. G. Feichtinger, S. S. Pandey (2003)

Czechoslovak Mathematical Journal

Using the techniques of approximation and factorization of convolution operators we study the problem of irregular sampling of band-limited functions on a locally compact Abelian group G . The results of this paper relate to earlier work by Feichtinger and Gröchenig in a similar way as Kluvánek’s work published in 1969 relates to the classical Shannon Sampling Theorem. Generally speaking we claim that reconstruction is possible as long as there is sufficient high sampling density. Moreover, the iterative...

Recurrence and mixing recurrence of multiplication operators

Mohamed Amouch, Hamza Lakrimi (2024)

Mathematica Bohemica

Let X be a Banach space, ( X ) the algebra of bounded linear operators on X and ( J , · J ) an admissible Banach ideal of ( X ) . For T ( X ) , let L J , T and R J , T ( J ) denote the left and right multiplication defined by L J , T ( A ) = T A and R J , T ( A ) = A T , respectively. In this paper, we study the transmission of some concepts related to recurrent operators between T ( X ) , and their elementary operators L J , T and R J , T . In particular, we give necessary and sufficient conditions for L J , T and R J , T to be sequentially recurrent. Furthermore, we prove that L J , T is recurrent if and only...

Reduced Cowen sets.

Curto, Raúl E., Lee, Woo Young (2001)

The New York Journal of Mathematics [electronic only]

Reducibility and unitary equivalence for a class of multiplication operators on the Dirichlet space

Yong Chen, Young Joo Lee, Tao Yu (2014)

Studia Mathematica

We consider the reducibility and unitary equivalence of multiplication operators on the Dirichlet space. We first characterize reducibility of a multiplication operator induced by a finite Blaschke product and, as an application, we show that a multiplication operator induced by a Blaschke product with two zeros is reducible only in an obvious case. Also, we prove that a multiplication operator induced by a multiplier ϕ is unitarily equivalent to a weighted shift of multiplicity 2 if and only if...

Reducible representations of abelian groups

Aharon Atzmon (2001)

Annales de l’institut Fourier

A criterion for reducibility of certain representations of abelian groups is established. Among the applications of this criterion, we give a positive answer to the translation invariant subspace problem for weighted L p spaces on locally compact abelian groups, for even weights and 1 < p < .

Reflexivity of the isometry group of some classical spaces.

Félix Cabello Sánchez, Lajos Molnár (2002)

Revista Matemática Iberoamericana

We investigate the reflexivity of the isometry group and the automorphism group of some important metric linear spaces and a1gebras. The paper consists of the following sections: 1. Preliminaries. 2. Sequence spaces. 3. Spaces of measurable functions. Hardy spaces. 5. Banach algebras of holomorphic functions. 6. Fréchet algebras of holomorphic functions. 7. Spaces of continuous functions.

Regular vector lattices of continuous functions and Korovkin-type theorems-Part II

Francesco Altomare, Mirella Cappelletti Montano (2006)

Studia Mathematica

By applying the results of the first part of the paper, we establish some Korovkin-type theorems for continuous positive linear operators in the setting of regular vector lattices of continuous functions. Moreover, we present simple methods to construct Korovkin subspaces for finitely defined operators and for the identity operator and we determine those classes of operators which admit finite-dimensional Korovkin subspaces. Finally, we give a Korovkin-type theorem for continuous positive projections....

Regularity properties of commutators and B M O -Triebel-Lizorkin spaces

Abdellah Youssfi (1995)

Annales de l'institut Fourier

In this paper we consider the regularity problem for the commutators ( [ b , R k ] ) 1 k n where b is a locally integrable function and ( R j ) 1 j n are the Riesz transforms in the n -dimensional euclidean space n . More precisely, we prove that these commutators ( [ b , R k ] ) 1 k n are bounded from L p into the Besov space B ˙ p s , p for 1 < p < + and 0 < s < 1 if and only if b is in the B M O -Triebel-Lizorkin space F ˙ s , p . The reduction of our result to the case p = 2 gives in particular that the commutators ( [ b , R k ] ) 1 k n are bounded form L 2 into the Sobolev space H ˙ s if and only if b is in the B M O -Sobolev...

Currently displaying 2081 – 2100 of 3251