Displaying 21 – 40 of 127

Showing per page

Embedding theorems for Müntz spaces

Isabelle Chalendar, Emmanuel Fricain, Dan Timotin (2011)

Annales de l’institut Fourier

We discuss boundedness and compactness properties of the embedding M Λ 1 L 1 ( μ ) , where M Λ 1 is the closed linear span of the monomials x λ n in L 1 ( [ 0 , 1 ] ) and μ is a finite positive Borel measure on the interval [ 0 , 1 ] . In particular, we introduce a class of “sublinear” measures and provide a rather complete solution of the embedding problem for the class of quasilacunary sequences Λ . Finally, we show how one can recapture some of Al Alam’s results on boundedness and the essential norm of weighted composition operators from M Λ 1 ...

Entropy and approximation numbers of embeddings between weighted Besov spaces

Iwona Piotrowska (2008)

Banach Center Publications

The present paper is devoted to the study of the “quality” of the compactness of the trace operator. More precisely, we characterize the asymptotic behaviour of entropy numbers of the compact map t r Γ : B p , q s ( , w ϰ Γ ) L p ( Γ ) , where Γ is a d-set with 0 < d < n and w ϰ Γ a weight of type w ϰ Γ ( x ) d i s t ( x , Γ ) ϰ near Γ with ϰ > -(n-d). There are parallel results for approximation numbers.

Entropy numbers of general diagonal operators.

Thomas Kühn (2005)

Revista Matemática Complutense

We determine the asymptotic behavior of the entropy numbers of diagonal operators D: lp → lq, (xk) → (skxk), 0 &lt; p,q ≤ ∞, under mild regularity and decay conditions on the generating sequence (σk). Our results extend the known estimates for polynomial and logarithmic diagonals (σk). Moreover, we also consider some exotic intermediate examples like (σk)=exp(-√log k).

Currently displaying 21 – 40 of 127