Displaying 21 – 40 of 109

Showing per page

Inequalities between the sum of powers and the exponential of sum of positive and commuting selfadjoint operators

Berrabah Bendoukha, Hafida Bendahmane (2011)

Archivum Mathematicum

Let ( ) be the set of all bounded linear operators acting in Hilbert space and + ( ) the set of all positive selfadjoint elements of ( ) . The aim of this paper is to prove that for every finite sequence ( A i ) i = 1 n of selfadjoint, commuting elements of + ( ) and every natural number p 1 , the inequality e p p p i = 1 n A i p exp i = 1 n A i , holds.

Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces

Bernd Carl (1985)

Annales de l'institut Fourier

The paper deals with covering problems and the degree of compactness of operators. The main part is devoted to relationships between entropy moduli and Kolmogorov (resp. Gelfand and approximation) numbers for operators which may be interpreted as counterparts to the classical Bernstein-Jackson inequalities for functions. Certain quantifications of results in the Riesz-Schauder-Theory are given. Finally, the largest distance between “the degree of approximation” and the “degree of compactness” of...

Input-output systems in Biology and Chemistry and a class of mathematical models describing them

Erich Bohl, Ivo Marek (2005)

Applications of Mathematics

Our aim is to show a class of mathematical models in application to some problems of cell biology. Typically, our models are described via classical chemical networks. This property is visualized by a conservation law. Mathematically, this conservation law guarantees most of the mathematical properties of the models such as global existence and uniqueness of solutions as well as positivity of the solutions for positive data. These properties are consequences of the fact that the infinitesimal generators...

Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I : un modèle

Mildred Hager (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans ce travail, nous considérons un opérateur différentiel simple ainsi que des perturbations. Alors que le spectre de l’opérateur non-perturbé est confiné à une droite à l’intérieur du pseudospectre, nous montrons pour les opérateurs perturbés que les valeurs propres se distribuent à l’intérieur du pseudospectre d’après une loi de Weyl.

Integral operators generated by Mercer-like kernels on topological spaces

M. H. Castro, V. A. Menegatto, A. P. Peron (2012)

Colloquium Mathematicae

We analyze some aspects of Mercer's theory when the integral operators act on L²(X,σ), where X is a first countable topological space and σ is a non-degenerate measure. We obtain results akin to the well-known Mercer's theorem and, under a positive definiteness assumption on the generating kernel of the operator, we also deduce series representations for the kernel, traceability of the operator and an integration formula to compute the trace. In this way, we upgrade considerably similar results...

Integral representations of unbounded operators by infinitely smooth kernels

Igor Novitskiî (2005)

Open Mathematics

In this paper, we prove that every unbounded linear operator satisfying the Korotkov-Weidmann characterization is unitarily equivalent to an integral operator in L 2(R), with a bounded and infinitely smooth Carleman kernel. The established unitary equivalence is implemented by explicitly definable unitary operators.

Currently displaying 21 – 40 of 109