Dilatability of sesquilinear form-valued kernels
We investigate oscillation and spectral properties (sufficient conditions for discreteness and boundedness below of the spectrum) of difference operators B(y)n+k = (-1)nwk n (pk n yk).
The discrete Wiener-Hopf operator generated by a function with the Fourier series is the operator T(a) induced by the Toeplitz matrix on some weighted sequence space . We assume that w satisfies the Muckenhoupt condition and that a is a piecewise continuous function subject to some natural multiplier condition. The last condition is in particular satisfied if a is of bounded variation. Our main result is a Fredholm criterion and an index formula for T(a). It implies that the essential spectrum...
We introduce the concept of disjoint hypercyclic operators. These are operators performing the approximation of any given vectors with a common subsequence of iterates applied on a common vector. The notion is extended to sequences of operators, and applied to composition operators and differential operators on spaces of analytic functions.
Let be a locally compact group and let Recently, Chen et al. characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space in terms of the weights. Sufficient and...
Composition operators Cφ induced by a selfmap φ of some set S are operators acting on a space consisting of functions on S by composition to the right with φ, that is Cφf = f º φ. In this paper, we consider the Hilbert Hardy space H2 on the open unit disk and find exact formulas for distances ||Cφ - Cψ|| between composition operators. The selfmaps φ and ψ involved in those formulas are constant, inner, or analytic selfmaps of the unit disk fixing the origin.