The search session has expired. Please query the service again.
Displaying 421 –
440 of
630
In this paper, we prove an existence theorem for the pseudo-non-local Cauchy problem , x₀(t₀) = x₀ - g(x), where A is the infinitesimal generator of a C₀ semigroup of operator on a Banach space. The functions f,g are weakly-weakly sequentially continuous and the integral is taken in the sense of Pettis.
The set of solutions of a Volterra equation in a Banach space with a Carathéodory kernel is proved to be an , in particular compact and connected. The kernel is not assumed to be uniformly continuous with respect to the unknown function and the characterization is given in terms of a B₀-space of continuous functions on a noncompact domain.
In the present paper, we give the lower estimation for the topological dimension of the fixed points set of a condensing continuous multimap in a Banach space. The abstract result is applied to the fixed point set of the multioperator of the form where is the superposition multioperator generated by the Carathéodory type multifunction F and S is the shift of a linear injective operator. We present sufficient conditions under which this set has the infinite topological dimension. In the last...
We prove that a set of weak solutions of the nonlinear Volterra integral equation has the Kneser property. The main condition in our result is formulated in terms of axiomatic measures of weak noncompactness.
We prove that every 3-generalized metric space is metrizable. We also show that for any ʋ with ʋ ≥ 4, not every ʋ-generalized metric space has a compatible symmetric topology.
Let H be a real Hilbert space and T be a maximal monotone
operator on H.
A well-known algorithm, developed by R. T. Rockafellar [16], for solving
the problem
(P) ”To find x ∈ H such that 0 ∈ T x”
is the proximal point algorithm.
Several generalizations have been considered by several authors: introduction
of a perturbation, introduction of a variable metric in the perturbed
algorithm, introduction of a pseudo-metric in place of the classical regularization,
. . .
We summarize some of these extensions...
We study a multilinear fixed-point equation in a closed ball of a Banach space where the application is 1-Lipschitzian: existence, uniqueness, approximations, regularity.
The notion of proximal normal structure is introduced and used to study mappings that are "relatively nonexpansive" in the sense that they are defined on the union of two subsets A and B of a Banach space X and satisfy ∥ Tx-Ty∥ ≤ ∥ x-y∥ for all x ∈ A, y ∈ B. It is shown that if A and B are weakly compact and convex, and if the pair (A,B) has proximal normal structure, then a relatively nonexpansive mapping T: A ∪ B → A ∪ B satisfying (i) T(A) ⊆ B and T(B) ⊆ A, has a proximal point in the sense that...
Currently displaying 421 –
440 of
630