Displaying 21 – 40 of 87

Showing per page

Factorization of operators on C*-algebras

Narcisse Randrianantoanina (1998)

Studia Mathematica

Let A be a C*-algebra. We prove that every absolutely summing operator from A into 2 factors through a Hilbert space operator that belongs to the 4-Schatten-von Neumann class. We also provide finite-dimensional examples that show that one cannot replace the 4-Schatten-von Neumann class by the p-Schatten-von Neumann class for any p < 4. As an application, we show that there exists a modulus of capacity ε → N(ε) so that if A is a C*-algebra and T Π 1 ( A , 2 ) with π 1 ( T ) 1 , then for every ε >0, the ε-capacity of...

Finite rank approximation and semidiscreteness for linear operators

Christian Le Merdy (1999)

Annales de l'institut Fourier

Given a completely bounded map u : Z M from an operator space Z into a von Neumann algebra (or merely a unital dual algebra) M , we define u to be C -semidiscrete if for any operator algebra A , the tensor operator I A u is bounded from A min Z into A nor M , with norm less than C . We investigate this property and characterize it by suitable approximation properties, thus generalizing the Choi-Effros characterization of semidiscrete von Neumann algebras. Our work is an extension of some recent work of Pisier on an analogous...

Fréchet interpolation spaces and Grothendieck operator ideals.

Jesús M. Fernández Castillo (1991)

Collectanea Mathematica

Starting with a continuous injection I: X → Y between Banach spaces, we are interested in the Fréchet (non Banach) space obtained as the reduced projective limit of the real interpolation spaces. We study relationships among the pertenence of I to an operator ideal and the pertenence of the given interpolation space to the Grothendieck class generated by that ideal.

Hilbert space factorization and Fourier type of operators

Aicke Hinrichs (2001)

Studia Mathematica

It is an open question whether every Fourier type 2 operator factors through a Hilbert space. We show that at least the natural gradations of Fourier type 2 norms and Hilbert space factorization norms are not uniformly equivalent. A corresponding result is also obtained for a number of other sequences of ideal norms instead of the Fourier type 2 gradation including the Walsh function analogue of Fourier type. Our main tools are ideal norms and random matrices.

Ideals of extendable and liftable operators.

Pawel Domanski (2003)

RACSAM

Se introducen los ideales de operadores que admiten extensión o levantamiento y se presenta una nueva aproximación al estudio de la escisión de sucesiones exactas cortas de espacios de Banach. Se considera la maximalidad de estos ideales y se investiga si son cerrados respecto de los límites puntuales acotados. Se resumen algunos ejemplos y se clarifica el papel de los espacios L1 y L∞.

Ideals of homogeneous polynomials and weakly compact approximation property in Banach spaces

Erhan Çalışkan (2007)

Czechoslovak Mathematical Journal

We show that a Banach space E has the weakly compact approximation property if and only if each continuous Banach-valued polynomial on E can be uniformly approximated on compact sets by homogeneous polynomials which are members of the ideal of homogeneous polynomials generated by weakly compact linear operators. An analogous result is established also for the compact approximation property.

Interpolation of real method spaces via some ideals of operators

Mieczysław Mastyło, Mario Milman (1999)

Studia Mathematica

Certain operator ideals are used to study interpolation of operators between spaces generated by the real method. Using orbital equivalence a new reiteration formula is proved for certain real interpolation spaces generated by ordered pairs of Banach lattices of the form ( X , L ( w ) ) . As an application we extend Ovchinnikov’s interpolation theorem from the context of classical Lions-Peetre spaces to a larger class of real interpolation spaces. A description of certain abstract J-method spaces is also presented....

Korovkin theory in normed algebras

Ferdinand Beckhoff (1991)

Studia Mathematica

If A is a normed power-associative complex algebra such that the selfadjoint part is normally ordered with respect to some order, then the Korovkin closure (see the introduction for definitions) of T ∪ {t* ∘ t| t ∈ T} contains J*(T) for any subset T of A. This can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to H*-algebras. For bounded H*-algebras and dual C*-algebras there is even equality. This answers a question posed in [1].

Linear inessential operators and generalized inverses

Bruce A. Barnes (2009)

Commentationes Mathematicae Universitatis Carolinae

The space of inessential bounded linear operators from one Banach space X into another Y is introduced. This space, I ( X , Y ) , is a subspace of B ( X , Y ) which generalizes Kleinecke’s ideal of inessential operators. For certain subspaces W of I ( X , Y ) , it is shown that when T B ( X , Y ) has a generalized inverse modulo W , then there exists a projection P B ( X ) such that T ( I - P ) has a generalized inverse and T P W .

Local properties of accessible injective operator ideals

F. Oertel (1998)

Czechoslovak Mathematical Journal

In addition to Pisier’s counterexample of a non-accessible maximal Banach ideal, we will give a large class of maximal Banach ideals which are accessible. The first step is implied by the observation that a “good behaviour” of trace duality, which is canonically induced by conjugate operator ideals can be extended to adjoint Banach ideals, if and only if these adjoint ideals satisfy an accessibility condition (theorem 3.1). This observation leads in a natural way to a characterization of accessible...

M -ideals of compact operators into p

Kamil John, Dirk Werner (2000)

Czechoslovak Mathematical Journal

We show for 2 p < and subspaces X of quotients of L p with a 1 -unconditional finite-dimensional Schauder decomposition that K ( X , p ) is an M -ideal in L ( X , p ) .

M ( r , s ) -ideals of compact operators

Rainis Haller, Marje Johanson, Eve Oja (2012)

Czechoslovak Mathematical Journal

We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces X and Y the subspace of all compact operators 𝒦 ( X , Y ) is an M ( r 1 r 2 , s 1 s 2 ) -ideal in the space of all continuous linear operators ( X , Y ) whenever 𝒦 ( X , X ) and 𝒦 ( Y , Y ) are M ( r 1 , s 1 ) - and M ( r 2 , s 2 ) -ideals in ( X , X ) and ( Y , Y ) , respectively, with r 1 + s 1 / 2 > 1 and r 2 + s 2 / 2 > 1 . We also prove that the M ( r , s ) -ideal 𝒦 ( X , Y ) in ( X , Y ) is separably determined. Among others, our results complete and improve some well-known results...

Marcinkiewicz spaces, commutators and non-commutative geometry

(2011)

Banach Center Publications

Nigel J. Kalton was one of the most eminent guests participating in the Józef Marcinkiewicz Centenary Conference. His contribution to the scientific aspect of the meeting was very essential. Nigel was going to prepare a paper based on his plenary lecture. The editors are completely sure that the paper would be a real ornament of the Proceedings. Unfortunately, Nigel's sudden death totally destroyed editors' hopes and plans. Every mathematician knows how unique were Nigel's mathematical achievements....

Currently displaying 21 – 40 of 87