Dunford-Pettis-like properties of continuous vector function spaces.
It is known that each bounded operator from lp → lris compact. The purpose of this paper is to present a very simple proof of this useful fact.
Let A be a C*-algebra. We prove that every absolutely summing operator from A into factors through a Hilbert space operator that belongs to the 4-Schatten-von Neumann class. We also provide finite-dimensional examples that show that one cannot replace the 4-Schatten-von Neumann class by the p-Schatten-von Neumann class for any p < 4. As an application, we show that there exists a modulus of capacity ε → N(ε) so that if A is a C*-algebra and with , then for every ε >0, the ε-capacity of...
Given a completely bounded map from an operator space into a von Neumann algebra (or merely a unital dual algebra) , we define to be -semidiscrete if for any operator algebra , the tensor operator is bounded from into , with norm less than . We investigate this property and characterize it by suitable approximation properties, thus generalizing the Choi-Effros characterization of semidiscrete von Neumann algebras. Our work is an extension of some recent work of Pisier on an analogous...
Starting with a continuous injection I: X → Y between Banach spaces, we are interested in the Fréchet (non Banach) space obtained as the reduced projective limit of the real interpolation spaces. We study relationships among the pertenence of I to an operator ideal and the pertenence of the given interpolation space to the Grothendieck class generated by that ideal.
It is an open question whether every Fourier type 2 operator factors through a Hilbert space. We show that at least the natural gradations of Fourier type 2 norms and Hilbert space factorization norms are not uniformly equivalent. A corresponding result is also obtained for a number of other sequences of ideal norms instead of the Fourier type 2 gradation including the Walsh function analogue of Fourier type. Our main tools are ideal norms and random matrices.
Se introducen los ideales de operadores que admiten extensión o levantamiento y se presenta una nueva aproximación al estudio de la escisión de sucesiones exactas cortas de espacios de Banach. Se considera la maximalidad de estos ideales y se investiga si son cerrados respecto de los límites puntuales acotados. Se resumen algunos ejemplos y se clarifica el papel de los espacios L1 y L∞.
We show that a Banach space has the weakly compact approximation property if and only if each continuous Banach-valued polynomial on can be uniformly approximated on compact sets by homogeneous polynomials which are members of the ideal of homogeneous polynomials generated by weakly compact linear operators. An analogous result is established also for the compact approximation property.
Certain operator ideals are used to study interpolation of operators between spaces generated by the real method. Using orbital equivalence a new reiteration formula is proved for certain real interpolation spaces generated by ordered pairs of Banach lattices of the form . As an application we extend Ovchinnikov’s interpolation theorem from the context of classical Lions-Peetre spaces to a larger class of real interpolation spaces. A description of certain abstract J-method spaces is also presented....
If A is a normed power-associative complex algebra such that the selfadjoint part is normally ordered with respect to some order, then the Korovkin closure (see the introduction for definitions) of T ∪ {t* ∘ t| t ∈ T} contains J*(T) for any subset T of A. This can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to H*-algebras. For bounded H*-algebras and dual C*-algebras there is even equality. This answers a question posed in [1].
The space of inessential bounded linear operators from one Banach space into another is introduced. This space, , is a subspace of which generalizes Kleinecke’s ideal of inessential operators. For certain subspaces of , it is shown that when has a generalized inverse modulo , then there exists a projection such that has a generalized inverse and .
In addition to Pisier’s counterexample of a non-accessible maximal Banach ideal, we will give a large class of maximal Banach ideals which are accessible. The first step is implied by the observation that a “good behaviour” of trace duality, which is canonically induced by conjugate operator ideals can be extended to adjoint Banach ideals, if and only if these adjoint ideals satisfy an accessibility condition (theorem 3.1). This observation leads in a natural way to a characterization of accessible...
We show for and subspaces of quotients of with a -unconditional finite-dimensional Schauder decomposition that is an -ideal in .
We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces and the subspace of all compact operators is an -ideal in the space of all continuous linear operators whenever and are - and -ideals in and , respectively, with and . We also prove that the -ideal in is separably determined. Among others, our results complete and improve some well-known results...
Nigel J. Kalton was one of the most eminent guests participating in the Józef Marcinkiewicz Centenary Conference. His contribution to the scientific aspect of the meeting was very essential. Nigel was going to prepare a paper based on his plenary lecture. The editors are completely sure that the paper would be a real ornament of the Proceedings. Unfortunately, Nigel's sudden death totally destroyed editors' hopes and plans. Every mathematician knows how unique were Nigel's mathematical achievements....