Previous Page 2

Displaying 21 – 29 of 29

Showing per page

Double Operator Integrals and Submajorization

D. Potapov, F. Sukochev (2010)

Mathematical Modelling of Natural Phenomena

We present a user-friendly version of a double operator integration theory which still retains a capacity for many useful applications. Using recent results from the latter theory applied in noncommutative geometry, we derive applications to analogues of the classical Heinz inequality, a simplified proof of a famous inequality of Birman-Koplienko-Solomyak and also to the Connes-Moscovici inequality. Our methods are sufficiently strong to treat these...

Dual Banach algebras: representations and injectivity

Matthew Daws (2007)

Studia Mathematica

We study representations of Banach algebras on reflexive Banach spaces. Algebras which admit such representations which are bounded below seem to be a good generalisation of Arens regular Banach algebras; this class includes dual Banach algebras as defined by Runde, but also all group algebras, and all discrete (weakly cancellative) semigroup algebras. Such algebras also behave in a similar way to C*- and W*-algebras; we show that interpolation space techniques can be used in place of GNS type arguments....

Duality of measures of non-𝒜-compactness

Juan Manuel Delgado, Cándido Piñeiro (2015)

Studia Mathematica

Let be a Banach operator ideal. Based on the notion of -compactness in a Banach space due to Carl and Stephani, we deal with the notion of measure of non–compactness of an operator. We consider a map χ (respectively, n ) acting on the operators of the surjective (respectively, injective) hull of such that χ ( T ) = 0 (respectively, n ( T ) = 0 ) if and only if the operator T is -compact (respectively, injectively -compact). Under certain conditions on the ideal , we prove an equivalence inequality involving χ ( T * ) and n d ( T ) ....

Currently displaying 21 – 29 of 29

Previous Page 2