Skip to main content (access key 's'), Skip to navigation (access key 'n'), Accessibility information (access key '0')
EuDML - The European Digital Mathematics Library

Login | Register | (Why Register?)

  • Home
  • Advanced Search
  • Browse by Subject
  • Browse by Journals
  • Refs Lookup
  • Subjects
  • 49-XX Calculus of variations and optimal control; optimization

49-XX Calculus of variations and optimal control; optimization

  • 49-00 General reference works (handbooks, dictionaries, bibliographies, etc.)
  • 49-01 Instructional exposition (textbooks, tutorial papers, etc.)
  • 49-02 Research exposition (monographs, survey articles)
  • 49-03 Historical (must also be assigned at least one classification number from Section 01)
  • 49-04 Explicit machine computation and programs (not the theory of computation or programming)
  • 49-06 Proceedings, conferences, collections, etc.
  • 49Jxx Existence theories
  • 49Kxx Optimality conditions
  • 49Lxx Hamilton-Jacobi theories, including dynamic programming
  • 49Mxx Numerical methods
  • 49Nxx Miscellaneous topics
  • 49Qxx Manifolds
  • 49Rxx Variational methods for eigenvalues of operators
  • 49Sxx Variational principles of physics
  • Items

All a b c d e f g h i j k l m n o p q r s t u v w x y z Other

Previous Page 12

Displaying 221 – 224 of 224

Showing per page

Частотная теорема для случая, когда пространства состояний и управлений - гильбертовы, и ее применение в некоторых задачах синтеза оптимального управления. I

В.А. Якубович (1974)

Sibirskij matematiceskij zurnal

Экстремальные задачи, порожденные пучками операторов

Ю.Ш. Абрамов (1983)

Sibirskij matematiceskij zurnal

Экстремальные свойства ортогональных параллелепипедов и их приложения к геометрии банаховых пространств

Е.Д. Глускин (1988)

Matematiceskij sbornik

Эпипроизводные, определяемые набором инфинитезималей.

С.С. Кутателадзе (1987)

Sibirskij matematiceskij zurnal

Currently displaying 221 – 224 of 224

Previous Page 12

EuDML
  • About EuDML initiative
  • Feedback
  •  version 2.1.7