Bang-bang control of a second-order non-linear stable plant with fourth- order nonlinearity
We present some general results on minimal barriers in the sense of De Giorgi for geometric evolution problems. We also compare minimal barriers with viscosity solutions for fully nonlinear geometric problems of the form . If is not degenerate elliptic, it turns out that we obtain the same minimal barriers if we replace with , which is defined as the smallest degenerate elliptic function above .
We prove some results in the context of isoperimetric inequalities with quantitative terms. In the -dimensional case, our main contribution is a method for determining the optimal coefficients in the inequality , valid for each Borel set with positive and finite area, with and being, respectively, the and the of . In dimensions, besides proving existence and regularity properties of minimizers for a wide class of including the lower semicontinuous extension of , we describe the...
It is proved that, as in three-dimensional elasticity, Betti's theorem represents a criterion for the existence of a stored-energy function for a Cosserat elastic shell.
The dynamics of a discrete-time predator-prey model with Holling-IV functional response are investigated. It is shown that the model undergoes a flip bifurcation, a Hopf bifurcation and a saddle-node bifurcation by using the center manifold theorem and bifurcation theory. Numerical simulations not only exhibit our results with the theoretical analysis, but also show the complex dynamical behaviors, such as the period-3, 6, 9, 12, 20, 63, 70, 112 orbits, a cascade of period-doubling bifurcations...
Variational inequalities are studied, where is a closed convex cone in , , is a matrix, is a small perturbation, a real parameter. The assumptions guaranteeing a Hopf bifurcation at some for the corresponding equation are considered and it is proved that then, in some situations, also a bifurcation of periodic solutions to our inequality occurs at some . Bifurcating solutions are obtained by the limiting process along branches of solutions to penalty problems starting at constructed...
Bifurcation and eigenvalue theorems are proved for a certain type of quasivariational inequalities using the method of a jump in the Leray-Schauder degree.