-functions on quasimetric spaces and fixed points for multivalued maps.
In this paper we give a survey on the theory of quadratic functionals. Particularly the relationships between positive definiteness and the asymptotic behaviour of Riccati matrix differential equations, and between the oscillation properties of linear Hamiltonian systems and Rayleigh’s principle are demonstrated. Moreover, the main tools form control theory (as e.g. characterization of strong observability), from the calculus of variations (as e.g. field theory and Picone’s identity), and from matrix...
In this paper we introduce the definition of coupled point with respect to a (scalar) quadratic functional on a noncompact interval. In terms of coupled points we prove necessary (and sufficient) conditions for the nonnegativity of these functionals.
In this paper, we prove that integral -varifolds in codimension 1 with , , have quadratic tilt-excess decay for -almost all , and a strong maximum principle which states that these varifolds cannot be touched by smooth manifolds whose mean curvature is given by the weak mean curvature , unless the smooth manifold is locally contained in the support of .
In a recent paper A. Cianchi, N. Fusco, F. Maggi, and A. Pratelli have shown that, in the Gauss space, a set of given measure and almost minimal Gauss boundary measure is necessarily close to be a half-space.Using only geometric tools, we extend their result to all symmetric log-concave measures on the real line. We give sharp quantitative isoperimetric inequalities and prove that among sets of given measure and given asymmetry (distance to half line, i.e. distance to sets of minimal perimeter),...
Given a measurable set of positive measure, it is not difficult to show that if and only if is equal to its convex hull minus a set of measure zero. We investigate the stability of this statement: If is small, is close to its convex hull? Our main result is an explicit control, in arbitrary dimension, on the measure of the difference between and its convex hull in terms of .
Motivated by digital communication channel, we consider the distributed output regulation problem for linear multi-agent systems with quantized state measurements. Quantizers take finitely many values and have an adjustable "zoom" parameter. Quantized distributed output regulation concerns designing distributed feedback by employing quantized technique for multi-agent systems such that all agents can track an active leader, and/or distributed disturbance rejection. With the solvability conditions...
Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal control are...
Let W be a function from the real m×n-matrices to the real numbers. If W is quasiconvex in the sense of the calculus of variations, then we show that W can be approximated locally uniformly by quasiconvex polynomials.
We prove a general relaxation theorem for multidimensional control problems of Dieudonné-Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex envelope with respect to the gradient variable, possesses the same finite minimal value as the original problem, and admits a global minimizer. As an application, we provide existence theorems for the image registration...
We prove a general relaxation theorem for multidimensional control problems of Dieudonné-Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex envelope with respect to the gradient variable, possesses the same finite minimal value as the original problem, and admits a global minimizer. As an application, we provide existence theorems for the image registration...
We characterize generalized Young measures, the so-called DiPerna–Majda measures which are generated by sequences of gradients. In particular, we precisely describe these measures at the boundary of the domain in the case of the compactification of ℝm × n by the sphere. We show that this characterization is closely related to the notion of quasiconvexity at the boundary introduced by Ball and Marsden [J.M. Ball and J. Marsden, Arch. Ration. Mech. Anal. 86 (1984) 251–277]. As a consequence we get...
We prove an existence result for equations of the form where the coefficients satisfy the usual ellipticity conditions and hypotheses weaker than the continuity with respect to the variable . Moreover, we give a counterexample which shows that the problem above may have no solution if the coefficients are supposed only Borel functions