Loading [MathJax]/extensions/MathZoom.js
- Subjects
- 49-XX Calculus of variations and optimal control; optimization
The paper considers a methodology of mathematical modeling of
ecological-economic
processes at the regional level. The basis of the model is formed by equations,
which describe
two interacting blocks: economic and ecological ones. Equations of the economic
block are represented
by relations of generalized inter-branch balance, while the ecological part is
described
in terms of differential equations with deviations with respect to some given
state of natural resources.
Issues of i) information...
The purpose of this paper is to present an alternative proof of the existence of the Walrasian equilibrium for the Arrow-Debreu-McKenzie model by the variational inequality technique. Moreover, examples of the generalized Arrow-Debreu-McKenzie model are given in which the price vector can reach the boundary of the orthant allowing a commodity to be of price zero at equilibrium. In such a case its supply exceeds demand. It is worth mentioning that utility functions in this model are allowed not to...
In this paper we deal with the energy functionals for the elastic thin film ω ⊂ ℝ² involving the bending moments. The effective energy functional is obtained by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type and to satisfy the conditions Δ₂ and...
In this paper we consider an elastic thin film ω ⊂ ℝ² with the bending moment depending also on the third thickness variable. The effective energy functional defined on the Orlicz-Sobolev space over ω is described by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type...
In this paper, we propose a novel algorithm for solving an optimal boundary control problem of the Burgers' equation. The solving method is based on the transformation of the original problem into a homogeneous boundary conditions problem. This transforms the original problem into an optimal distributed control problem. The modal expansion technique is applied to the distributed control problem of the Burgers' equation to generate a low-dimensional dynamical system. The control parametrization method...
Currently displaying 1 –
20 of
249