Oscillations and concentrations generated by -free mappings and weak lower semicontinuity of integral functionals
DiPerna's and Majda's generalization of Young measures is used to describe oscillations and concentrations in sequences of maps satisfying a linear differential constraint . Applications to sequential weak lower semicontinuity of integral functionals on -free sequences and to weak continuity of determinants are given. In particular, we state necessary and sufficient conditions for weak* convergence of det in measures on the closure of if in . This convergence holds, for example, under...