Previous Page 35

Displaying 681 – 687 of 687

Showing per page

Oscillations and concentrations generated by 𝒜 -free mappings and weak lower semicontinuity of integral functionals

Irene Fonseca, Martin Kružík (2010)

ESAIM: Control, Optimisation and Calculus of Variations

DiPerna's and Majda's generalization of Young measures is used to describe oscillations and concentrations in sequences of maps { u k } k L p ( Ω ; m ) satisfying a linear differential constraint 𝒜 u k = 0 . Applications to sequential weak lower semicontinuity of integral functionals on 𝒜 -free sequences and to weak continuity of determinants are given. In particular, we state necessary and sufficient conditions for weak* convergence of det ϕ k * det ϕ in measures on the closure of Ω n if ϕ k ϕ in W 1 , n ( Ω ; n ) . This convergence holds, for example, under...

Oscillations and concentrations in sequences of gradients

Martin Kružík, Agnieszka Kałamajska (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We use DiPerna’s and Majda’s generalization of Young measures to describe oscillations and concentrations in sequences of gradients, { u k } , bounded in L p ( Ø ; m × n ) if p > 1 and Ω n is a bounded domain with the extension property in W 1 , p . Our main result is a characterization of those DiPerna-Majda measures which are generated by gradients of Sobolev maps satisfying the same fixed Dirichlet boundary condition. Cases where no boundary conditions nor regularity of Ω are required and links with lower semicontinuity results...

Oscillations and concentrations in sequences of gradients

Agnieszka Kałamajska, Martin Kružík (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We use DiPerna's and Majda's generalization of Young measures to describe oscillations and concentrations in sequences of gradients, { u k } , bounded in L p ( Ω ; m × n ) if p > 1 and Ω n is a bounded domain with the extension property in W 1 , p . Our main result is a characterization of those DiPerna-Majda measures which are generated by gradients of Sobolev maps satisfying the same fixed Dirichlet boundary condition. Cases where no boundary conditions nor regularity of Ω are required and links with lower semicontinuity...

Currently displaying 681 – 687 of 687

Previous Page 35