Displaying 101 – 120 of 397

Showing per page

Convergence of the time-discretized monotonic schemes

Julien Salomon (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Many numerical simulations in (bilinear) quantum control use the monotonically convergent Krotov algorithms (introduced by Tannor et al. [Time Dependent Quantum Molecular Dynamics (1992) 347–360]), Zhu and Rabitz [J. Chem. Phys. (1998) 385–391] or their unified form described in Maday and Turinici [J. Chem. Phys. (2003) 8191–8196]. In Maday et al. [Num. Math. (2006) 323–338], a time discretization which preserves the property of monotonicity has been presented. This paper introduces a proof of...

Convex approximation of an inhomogeneous anisotropic functional

Giovanni Bellettini, Maurizio Paolini (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The numerical minimization of the functional F u = Ω ϕ x , ν u D u + Ω μ u d H n - 1 - Ω κ u d x , u B V Ω ; - 1 , 1 is addressed. The function ϕ is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that F can be equivalently minimized on the convex set B V Ω ; - 1 , 1 and then regularized with a sequence F ϵ u ϵ , of stricdy convex functionals defined on B V Ω ; - 1 , 1 . Then both F and F ϵ , can be discretized by continuous linear finite elements. The convexity property of the functionals on B V Ω ; - 1 , 1 is useful in the numerical minimization...

Critical points of the Moser-Trudinger functional on a disk

Andrea Malchiodi, Luca Martinazzi (2014)

Journal of the European Mathematical Society

On the unit disk B 1 2 we study the Moser-Trudinger functional E ( u ) = B 1 e u 2 - 1 d x , u H 0 1 ( B 1 ) and its restrictions E | M Λ , where M Λ : = { u H 0 1 ( B 1 ) : u H 0 1 2 = Λ } for Λ > 0 . We prove that if a sequence u k of positive critical points of E | M Λ k (for some Λ k > 0 ) blows up as k , then Λ k 4 π , and u k 0 weakly in H 0 1 ( B 1 ) and strongly in C loc 1 ( B ¯ 1 { 0 } ) . Using this fact we also prove that when Λ is large enough, then E | M Λ has no positive critical point, complementing previous existence results by Carleson-Chang, M. Struwe and Lamm-Robert-Struwe.

Dirichlet control of unsteady Navier–Stokes type system related to Soret convection by boundary penalty method

S. S. Ravindran (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the boundary penalty method for optimal control of unsteady Navier–Stokes type system that has been proposed as an alternative for Dirichlet boundary control. Existence and uniqueness of solutions are demonstrated and existence of optimal control for a class of optimal control problems is established. The asymptotic behavior of solution, with respect to the penalty parameter ϵ, is studied. In particular, we prove convergence of solutions of penalized control problem to the...

Div-curl Young measures and optimal design in any dimension.

Pablo Pedregal (2007)

Revista Matemática Complutense

We explicitly introduce and exploit div-curl Young measures to examine optimal design problems governed by a linear state law in divergence form. The cost is allowed to depend explicitly on the gradient of the state. By means of this family of measures, we can formulate a suitable relaxed version of the problem, and, in a subsequent step, put it in a similar form as the original optimal design problem with an appropriate set of designs and generalized state law. Many of the issues involved has been...

Domain optimization in 3 D -axisymmetric elliptic problems by dual finite element method

Ivan Hlaváček (1990)

Aplikace matematiky

An axisymmetric second order elliptic problem with mixed boundary conditions is considered. The shape of the domain has to be found so as to minimize a cost functional, which is given in terms of the cogradient of the solution. A new dual finite element method is used for approximate solutions. The existence of an optimal domain is proven and a convergence analysis presented.

Dynamic coverage control design of multi-agent systems under ellipse sensing regions

Longbiao Ma, Fenghua He, Long Wang, Denggao Ji, Yu Yao (2018)

Kybernetika

This paper studies the dynamic coverage control problem for cooperative region reconnaissance where a group of agents are required to reconnoitre a given region. The main challenge of this problem is that the sensing region of each agent is an ellipse. This modeling results in asymmetric(directed) interactions among agents. First, the region reconnaissance is formulated as a coverage problem, where each point in the given region should be surveyed until a preset level is achieved. Then, a coverage...

Dynamic Programming for the stochastic Navier-Stokes equations

Giuseppe da Prato, Arnaud Debussche (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We solve an optimal cost problem for a stochastic Navier-Stokes equation in space dimension 2 by proving existence and uniqueness of a smooth solution of the corresponding Hamilton-Jacobi-Bellman equation.

Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space

Pedro Merino, Fredi Tröltzsch, Boris Vexler (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The finite element approximation of optimal control problems for semilinear elliptic partial differential equation is considered, where the control belongs to a finite-dimensional set and state constraints are given in finitely many points of the domain. Under the standard linear independency condition on the active gradients and a strong second-order sufficient optimality condition, optimal error estimates are derived for locally optimal controls.

Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints

Eduardo Casas (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states....

Error Estimates for the Numerical Approximation of Semilinear Elliptic Control Problems with Finitely Many State Constraints

Eduardo Casas (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L∞ norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states. ...

Currently displaying 101 – 120 of 397