Rank-one-convex and quasiconvex envelopes for functions depending on quadratic forms.
The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. Here, a non-homogeneous material is considered, where the elastic-plastic properties change discontinuously. In the first part, we have found the extremal relation between the displacement formulation defined on the space of bounded deformation and the stress formulation of the variational problem in Hencky plasticity. In the second part, we prove that the displacement...
The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. A non-homogeneous material whose elastic-plastic properties change discontinuously is considered. We find (in an explicit form) the extremal relation between the displacement formulation (defined on the space of bounded deformation) and the stress formulation of the variational problem in Hencky plasticity. This extremal relation is used in the proof of the regularity of displacements. ...
The aim of this paper is to study the problem of regularity of solutions in Hencky plasticity. We consider a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.
The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. We consider a plate made of a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.
The aim of this paper is to find the largest lower semicontinuous minorant of the elastic-plastic energy of a body with fissures. The functional of energy considered is not coercive.
We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type where , is a Carathéodory function such that is convex, and there exist constants and such that for almost all , all and all . We show that, even if and only belong to , the interplay implies the existence of a minimizer which belongs to .
This article studies an integral representation of functionals of linear growth on metric measure spaces with a doubling measure and a Poincaré inequality. Such a functional is defined via relaxation, and it defines a Radon measure on the space. For the singular part of the functional, we get the expected integral representation with respect to the variation measure. A new feature is that in the representation for the absolutely continuous part, a constant appears already in the weighted Euclidean...
We study properties of the functionalF loc ( u,Ω ) : = inf ( u j ) lim inf j → ∞ ∫ Ω f ( ∇ u j ) d x , whereu ∈ BV(Ω;RN), and f:RN × n → R is continuous and satisfies 0 ≤ f(ξ) ≤ L(1 + | ξ | r). For r ∈ [1,2), assuming f has linear growth in certain rank-one directions, we combine a result of [A. Braides and A. Coscia, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 737–756] with a new technique involving mollification to prove an upper bound for Floc. Then, for r ∈ [ 1 , n n − 1 ) , we prove that...
In the framework of the linear fracture theory, a commonly-used tool to describe the smooth evolution of a crack embedded in a bounded domain Ω is the so-called energy release rate defined as the variation of the mechanical energy with respect to the crack dimension. Precisely, the well-known Griffith's criterion postulates the evolution of the crack if this rate reaches a critical value. In this work, in the anti-plane scalar case, we consider the shape design problem which consists in optimizing...
As a model for the energy of a brittle elastic body we consider an integral functional consisting of two parts: a volume one (the usual linearly elastic energy) which is quadratic in the strain, and a surface part, which is concentrated along the fractures (i.e. on the discontinuities of the displacement function) and whose density depends on the jump part of the strain. We study the problem of the lower semicontinuous envelope of such a functional under the assumptions that the surface energy density...
Given a Borel function ψ defined on a bounded open set Ω with Lipschitz boundary and , we prove an explicit representation formula for the L1 lower semicontinuous envelope of Mumford-Shah type functionals with the obstacle constraint