Semicontinuità inferiore di funzionali integrali nel caso vettoriale e buona posizione nel calcolo delle variazioni
Viene studiata la semicontinuità rispetto alla topologia di per alcuni funzionali del Calcolo delle Variazioni dipendenti da funzioni a valori vettoriali.
Γ):Γ ∈ 𝒜, ℋ1(Γ) = l}, where ℋ1D1,...,Dk } ⊂ Rd . The cost functional ℰ(Γ) is the Dirichlet energy of Γ defined through the Sobolev functions on Γ vanishing on the points Di. We analyze the existence of a solution in both the families of connected sets and of metric graphs. At the end, several explicit examples are discussed.
We construct an upper bound for the following family of functionals , which arises in the study of micromagnetics:Here is a bounded domain in , (corresponding to the magnetization) and , the demagnetizing field created by , is given bywhere is the extension of by in . Our upper bound coincides with the lower bound obtained by Rivière and Serfaty.
Il est démontré par Mentagui [ESAIM : COCV 9 (2003) 297-315] que, dans le cas des espaces de Banach généraux, la convergence d’Attouch-Wets est stable par une classe d’opérations classiques de l’analyse convexe, lorsque les limites des suites d’ensembles et de fonctions satisfont certaines conditions de qualification naturelles. Ceci tombe en défaut avec la slice convergence. Dans cet article, nous établissons des conditions de qualification uniformes assurant la stabilité de la slice convergence...
Il est démontré par Mentagui [ESAIM: COCV9 (2003) 297-315] que, dans le cas des espaces de Banach généraux, la convergence d'Attouch-Wets est stable par une classe d'opérations classiques de l'analyse convexe, lorsque les limites des suites d'ensembles et de fonctions satisfont certaines conditions de qualification naturelles. Ceci tombe en défaut avec la slice convergence. Dans cet article, nous établissons des conditions de qualification uniformes assurant la stabilité de la slice convergence...
We derive a new criterion for a real-valued function to be in the Sobolev space . This criterion consists of comparing the value of a functional with the values of the same functional applied to convolutions of with a Dirac sequence. The difference of these values converges to zero as the convolutions approach , and we prove that the rate of convergence to zero is connected to regularity: if and only if the convergence is sufficiently fast. We finally apply our criterium to a minimization...
We show that the classical solution of the heat equation can be seen as the minimizer of a suitable functional defined in space-time. Using similar ideas, we introduce a functional on the class of space-time tracks of moving hypersurfaces, and we study suitable minimization problems related with . We show some connections between minimizers of and mean curvature flow.
In this work we study the nonlinear complementarity problem on the nonnegative orthant. This is done by approximating its equivalent variational-inequality-formulation by a sequence of variational inequalities with nested compact domains. This approach yields simultaneously existence, sensitivity, and stability results. By introducing new classes of functions and a suitable metric for performing the approximation, we provide bounds for the asymptotic set of the solution set and coercive existence...
We present some new problems in spectral optimization. The first one consists in determining the best domain for the Dirichlet energy (or for the first eigenvalue) of the metric Laplacian, and we consider in particular Riemannian or Finsler manifolds, Carnot-Carathéodory spaces, Gaussian spaces. The second one deals with the optimal shape of a graph when the minimization cost is of spectral type. The third one is the optimization problem for a Schrödinger potential in suitable classes.
We introduce an intrinsic notion of perimeter for subsets of a general Minkowski space ( a finite dimensional Banach space in which the norm is not required to be even). We prove that this notion of perimeter is equivalent to the usual definition of surface energy for crystals and we study the regularity properties of the minimizers and the quasi-minimizers of perimeter. In the two-dimensional case we obtain optimal regularity results: apart from a singular set (which is -negligible and is empty...
We introduce an intrinsic notion of perimeter for subsets of a general Minkowski space (i.e. a finite dimensional Banach space in which the norm is not required to be even). We prove that this notion of perimeter is equivalent to the usual definition of surface energy for crystals and we study the regularity properties of the minimizers and the quasi-minimizers of perimeter. In the two-dimensional case we obtain optimal regularity results: apart from a singular set (which is -negligible and is...
An optimal control problem when controls act on the boundary can also be understood as a variational principle under differential constraints and no restrictions on boundary and/or initial values. From this perspective, some existence theorems can be proved when cost functionals depend on the gradient of the state. We treat the case of elliptic and non-elliptic second order state laws only in the two-dimensional situation. Our results are based on deep facts about gradient Young measures.