Page 1 Next

Displaying 1 – 20 of 54

Showing per page

Decomposable hulls of multifunctions

Andrzej Nowak, Celina Rom (2002)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Let F be a multifunction with values in Lₚ(Ω, X). In this note, we study which regularity properties of F are preserved when we consider the decomposable hull of F.

Decrease of C1,1 property in vector optimization

Dušan Bednařík, Karel Pastor (2009)

RAIRO - Operations Research

In the paper we generalize sufficient and necessary optimality conditions obtained by Ginchev, Guerraggio, Rocca, and by authors with the help of the notion of ℓ-stability for vector functions.

Delay Dynamics of Cancer and Immune Cell Model

D. Adongo, K.R. Fister (2012)

Mathematical Modelling of Natural Phenomena

We investigate optimal control of a cancer-immune cell interactive model with delay in the interphase compartment. By applying the optimal control theory, we seek to minimize the cost associated with the chemotherapy drug, minimize the accumulation of cancer cells, and increase the immune cell presence. Optimality conditions and characterization of the control are provided. Numerical analyses are given to enhance the understanding of the difficulties...

Delay perturbed evolution problems involving time dependent subdifferential operators

Soumia Saïdi, Mustapha Fateh Yarou (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We investigate in the present paper, the existence and uniqueness of solutions for functional differential inclusions involving a subdifferential operator in the infinite dimensional setting. The perturbation which contains the delay is single-valued, separately measurable, and separately Lipschitz. We prove, without any compactness condition, that the problem has one and only one solution.

Dense Subdifferentiability and Trustworthiness for Arbitrary Subdifferentials

Jules, Florence, Lassonde, Marc (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 49J52, 49J50, 58C20, 26B09.We show that the properties of dense subdifferentiability and of trustworthiness are equivalent for any subdifferential satisfying a small set of natural axioms. The proof relies on a remarkable property of the subdifferential of the inf-convolution of two (non necessarily convex) functions. We also show the equivalence of the dense subdifferentiability property with other basic properties of subdifferentials such as a weak* Lipschitz...

Derivatives of Hadamard type in scalar constrained optimization

Karel Pastor (2017)

Kybernetika

Vsevolod I. Ivanov stated (Nonlinear Analysis 125 (2015), 270-289) the general second-order optimality condition for the constrained vector problem in terms of Hadamard derivatives. We will consider its special case for a scalar problem and show some corollaries for example for -stable at feasible point functions. Then we show the advantages of obtained results with respect to the previously obtained results.

Design-dependent loads in topology optimization

Blaise Bourdin, Antonin Chambolle (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S , which is the total work of the pressure and...

Design-dependent loads in topology optimization

Blaise Bourdin, Antonin Chambolle (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S, which is the total work of the pressure...

Deterministic minimax impulse control in finite horizon: the viscosity solution approach

Brahim El Asri (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We study here the impulse control minimax problem. We allow the cost functionals and dynamics to be unbounded and hence the value functions can possibly be unbounded. We prove that the value function of the problem is continuous. Moreover, the value function is characterized as the unique viscosity solution of an Isaacs quasi-variational inequality. This problem is in relation with an application in mathematical finance.

Deterministic state-constrained optimal control problems without controllability assumptions

Olivier Bokanowski, Nicolas Forcadel, Hasnaa Zidani (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In the present paper, we consider nonlinear optimal control problems with constraints on the state of the system. We are interested in the characterization of the value function without any controllability assumption. In the unconstrained case, it is possible to derive a characterization of the value function by means of a Hamilton-Jacobi-Bellman (HJB) equation. This equation expresses the behavior of the value function along the trajectories arriving or starting from any position x. In the constrained...

Deterministic state-constrained optimal control problems without controllability assumptions

Olivier Bokanowski, Nicolas Forcadel, Hasnaa Zidani (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In the present paper, we consider nonlinear optimal control problems with constraints on the state of the system. We are interested in the characterization of the value function without any controllability assumption. In the unconstrained case, it is possible to derive a characterization of the value function by means of a Hamilton-Jacobi-Bellman (HJB) equation. This equation expresses the behavior of the value function along the trajectories arriving or starting from any position x. In...

Differentiability for minimizers of anisotropic integrals

Paola Cavaliere, Anna D'Ottavio, Francesco Leonetti, Maria Longobardi (1998)

Commentationes Mathematicae Universitatis Carolinae

We consider a function u : Ω N , Ω n , minimizing the integral Ω ( | D 1 u | 2 + + | D n - 1 u | 2 + | D n u | p ) d x , 2 ( n + 1 ) / ( n + 3 ) p < 2 , where D i u = u / x i , or some more general functional with the same behaviour; we prove the existence of second weak derivatives D ( D 1 u ) , , D ( D n - 1 u ) L 2 and D ( D n u ) L p .

Differential stability of solutions to air quality control problems in urban area

Piotr Holnicki, Jan Sokołowski, Antoni Żochowski (1987)

Aplikace matematiky

The convex optimal control problem for a system described by the parabolic equation is considered. The form of the right derivative of an optimal solution with respect to the parameter is derived. The applications to an air quality control problem are discussed. Numerical result are provided.

Dimension reduction for functionals on solenoidal vector fields

Stefan Krömer (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study integral functionals constrained to divergence-free vector fields in Lp on a thin domain, under standard p-growth and coercivity assumptions, 1 &lt; p &lt; ∞. We prove that as the thickness of the domain goes to zero, the Gamma-limit with respect to weak convergence in Lp is always given by the associated functional with convexified energy density wherever it is finite. Remarkably, this happens despite the fact that relaxation of nonconvex functionals subject to the limiting constraint...

Currently displaying 1 – 20 of 54

Page 1 Next