-gap functions and descent methods for a class of monotone equilibrium problems.
Let F be a multifunction with values in Lₚ(Ω, X). In this note, we study which regularity properties of F are preserved when we consider the decomposable hull of F.
In the paper we generalize sufficient and necessary optimality conditions obtained by Ginchev, Guerraggio, Rocca, and by authors with the help of the notion of ℓ-stability for vector functions.
We investigate optimal control of a cancer-immune cell interactive model with delay in the interphase compartment. By applying the optimal control theory, we seek to minimize the cost associated with the chemotherapy drug, minimize the accumulation of cancer cells, and increase the immune cell presence. Optimality conditions and characterization of the control are provided. Numerical analyses are given to enhance the understanding of the difficulties...
We investigate in the present paper, the existence and uniqueness of solutions for functional differential inclusions involving a subdifferential operator in the infinite dimensional setting. The perturbation which contains the delay is single-valued, separately measurable, and separately Lipschitz. We prove, without any compactness condition, that the problem has one and only one solution.
2000 Mathematics Subject Classification: 49J52, 49J50, 58C20, 26B09.We show that the properties of dense subdifferentiability and of trustworthiness are equivalent for any subdifferential satisfying a small set of natural axioms. The proof relies on a remarkable property of the subdifferential of the inf-convolution of two (non necessarily convex) functions. We also show the equivalence of the dense subdifferentiability property with other basic properties of subdifferentials such as a weak* Lipschitz...
Vsevolod I. Ivanov stated (Nonlinear Analysis 125 (2015), 270-289) the general second-order optimality condition for the constrained vector problem in terms of Hadamard derivatives. We will consider its special case for a scalar problem and show some corollaries for example for -stable at feasible point functions. Then we show the advantages of obtained results with respect to the previously obtained results.
We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset of a reference domain, and the complement of is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure , which is the total work of the pressure and...
We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S, which is the total work of the pressure...
We study here the impulse control minimax problem. We allow the cost functionals and dynamics to be unbounded and hence the value functions can possibly be unbounded. We prove that the value function of the problem is continuous. Moreover, the value function is characterized as the unique viscosity solution of an Isaacs quasi-variational inequality. This problem is in relation with an application in mathematical finance.
In the present paper, we consider nonlinear optimal control problems with constraints on the state of the system. We are interested in the characterization of the value function without any controllability assumption. In the unconstrained case, it is possible to derive a characterization of the value function by means of a Hamilton-Jacobi-Bellman (HJB) equation. This equation expresses the behavior of the value function along the trajectories arriving or starting from any position x. In the constrained...
In the present paper, we consider nonlinear optimal control problems with constraints on the state of the system. We are interested in the characterization of the value function without any controllability assumption. In the unconstrained case, it is possible to derive a characterization of the value function by means of a Hamilton-Jacobi-Bellman (HJB) equation. This equation expresses the behavior of the value function along the trajectories arriving or starting from any position x. In...
We consider a function , , minimizing the integral , , where , or some more general functional with the same behaviour; we prove the existence of second weak derivatives and .
The convex optimal control problem for a system described by the parabolic equation is considered. The form of the right derivative of an optimal solution with respect to the parameter is derived. The applications to an air quality control problem are discussed. Numerical result are provided.
We study integral functionals constrained to divergence-free vector fields in Lp on a thin domain, under standard p-growth and coercivity assumptions, 1 < p < ∞. We prove that as the thickness of the domain goes to zero, the Gamma-limit with respect to weak convergence in Lp is always given by the associated functional with convexified energy density wherever it is finite. Remarkably, this happens despite the fact that relaxation of nonconvex functionals subject to the limiting constraint...