Displaying 41 – 60 of 92

Showing per page

Regularizing effect of the interplay between coefficients in some noncoercive integral functionals

Aiping Zhang, Zesheng Feng, Hongya Gao (2024)

Czechoslovak Mathematical Journal

We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type 𝒥 ( v ) = Ω j ( x , v , v ) d x + Ω a ( x ) | v | 2 d x - Ω f v d x , v W 0 1 , 2 ( Ω ) , where Ω N , j is a Carathéodory function such that ξ j ( x , s , ξ ) is convex, and there exist constants 0 τ < 1 and M > 0 such that | ξ | 2 ( 1 + | s | ) τ j ( x , s , ξ ) M | ξ | 2 for almost all x Ω , all s and all ξ N . We show that, even if 0 < a ( x ) and f ( x ) only belong to L 1 ( Ω ) , the interplay | f ( x ) | 2 Q a ( x ) implies the existence of a minimizer u W 0 1 , 2 ( Ω ) which belongs to L ( Ω ) .

Relations between multidimensional interval-valued variational problems and variational inequalities

Anurag Jayswal, Ayushi Baranwal (2022)

Kybernetika

In this paper, we introduce a new class of variational inequality with its weak and split forms to obtain an L U -optimal solution to the multi-dimensional interval-valued variational problem, which is a wider class of interval-valued programming problem in operations research. Using the concept of (strict) L U -convexity over the involved interval-valued functionals, we establish equivalence relationships between the solutions of variational inequalities and the (strong) L U -optimal solutions of the multi-dimensional...

Relaxation and Integral Representation for Functionals of Linear Growth on Metric Measure spaces

Heikki Hakkarainen, Juha Kinnunen, Panu Lahti, Pekka Lehtelä (2016)

Analysis and Geometry in Metric Spaces

This article studies an integral representation of functionals of linear growth on metric measure spaces with a doubling measure and a Poincaré inequality. Such a functional is defined via relaxation, and it defines a Radon measure on the space. For the singular part of the functional, we get the expected integral representation with respect to the variation measure. A new feature is that in the representation for the absolutely continuous part, a constant appears already in the weighted Euclidean...

Relaxation in BV of integrals with superlinear growth

Parth Soneji (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We study properties of the functional loc ( u , Ω ) : = inf ( u j ) lim inf j Ω f ( u j ) x ( u j ) W loc 1 , r Ω , u j u in Ω , , F loc ( u,Ω ) : = inf ( u j ) lim inf j → ∞ ∫ Ω f ( ∇ u j ) d x , whereu ∈ BV(Ω;RN), and f:RN × n → R is continuous and satisfies 0 ≤ f(ξ) ≤ L(1 + | ξ | r). For r ∈ [1,2), assuming f has linear growth in certain rank-one directions, we combine a result of [A. Braides and A. Coscia, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 737–756] with a new technique involving mollification to prove an upper bound for Floc. Then, for r [ 1 , n n - 1 ) r ∈ [ 1 , n n − 1 ) , we prove that...

Relaxation of an optimal design problem in fracture mechanic: the anti-plane case

Arnaud Münch, Pablo Pedregal (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In the framework of the linear fracture theory, a commonly-used tool to describe the smooth evolution of a crack embedded in a bounded domain Ω is the so-called energy release rate defined as the variation of the mechanical energy with respect to the crack dimension. Precisely, the well-known Griffith's criterion postulates the evolution of the crack if this rate reaches a critical value. In this work, in the anti-plane scalar case, we consider the shape design problem which consists in optimizing...

Relaxation of elastic energies with free discontinuities and constraint on the strain

Andrea Braides, Anneliese Defranceschi, Enrico Vitali (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

As a model for the energy of a brittle elastic body we consider an integral functional consisting of two parts: a volume one (the usual linearly elastic energy) which is quadratic in the strain, and a surface part, which is concentrated along the fractures (i.e. on the discontinuities of the displacement function) and whose density depends on the jump part of the strain. We study the problem of the lower semicontinuous envelope of such a functional under the assumptions that the surface energy density...

Relaxation of free-discontinuity energies with obstacles

Matteo Focardi, Maria Stella Gelli (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Given a Borel function ψ defined on a bounded open set Ω with Lipschitz boundary and ϕ L 1 ( Ω , n - 1 ) , we prove an explicit representation formula for the L1 lower semicontinuous envelope of Mumford-Shah type functionals with the obstacle constraint u + ψ ...

Relaxation of optimal control problems in Lp-SPACES

Nadir Arada (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider control problems governed by semilinear parabolic equations with pointwise state constraints and controls in an Lp-space (p < ∞). We construct a correct relaxed problem, prove some relaxation results, and derive necessary optimality conditions.

Relaxation of optimal control problems in 𝖫 𝗉 -spaces

Nadir Arada (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We consider control problems governed by semilinear parabolic equations with pointwise state constraints and controls in an L p -space ( p &lt; ). We construct a correct relaxed problem, prove some relaxation results, and derive necessary optimality conditions.

Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes

Uldis Raitums (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the weak closure W Z of the set Z of all feasible pairs (solution, flow) of the family of potential elliptic systems where Ω 𝐑 n is a bounded Lipschitz domain, F s are strictly convex smooth functions with quadratic growth and S = { σ m e a s u r a b l e σ s ( x ) = 0 or 1 , s = 1 , , s 0 , σ 1 ( x ) + + σ s 0 ( x ) = 1 } . We show that W Z is the zero level set for an integral functional with the integrand Q being the 𝐀 -quasiconvex envelope for a certain function and the operator 𝐀 = ( curl,div ) m . If the functions F s are isotropic, then on the characteristic cone Λ (defined by the operator 𝐀 ) Q coincides...

Currently displaying 41 – 60 of 92