Displaying 61 – 80 of 92

Showing per page

Relaxation of Quasilinear Elliptic Systems via A-quasiconvex Envelopes

Uldis Raitums (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the weak closure WZ of the set Z of all feasible pairs (solution, flow) of the family of potential elliptic systems div s = 1 s 0 σ s ( x ) F s ' ( u ( x ) + g ( x ) ) - f ( x ) = 0 in Ω , u = ( u 1 , , u m ) H 0 1 ( Ω ; 𝐑 m ) , σ = ( σ 1 , , σ s 0 ) S , where Ω ⊂ Rn is a bounded Lipschitz domain, Fs are strictly convex smooth functions with quadratic growth and S = { σ m e a s u r a b l e σ s ( x ) = 0 or 1 , s = 1 , , s 0 , σ 1 ( x ) + + σ s 0 ( x ) = 1 } . We show that WZ is the zero level set for an integral functional with the integrand Q being the A-quasiconvex envelope for a certain function and the operator A = (curl,div)m. If the functions Fs are isotropic, then on the characteristic cone...

Relaxation of singular functionals defined on Sobolev spaces

Hafedh Ben Belgacem (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider a Borel measurable function on the space of m × n matrices f : M m × n ¯ taking the value + , such that its rank-one-convex envelope R f is finite and satisfies for some fixed p > 1 : - c 0 R f ( F ) c ( 1 + F p ) for all F M m × n , where c , c 0 > 0 . Let Ø be a given regular bounded open domain of n . We define on W 1 , p ( Ø ; m ) the functional I ( u ) = Ø f ( u ( x ) ) d x . Then, under some technical restrictions on f , we show that the relaxed functional I ¯ for the weak topology of W 1 , p ( Ø ; m ) has the integral representation: I ¯ ( u ) = Ø Q [ R f ] ( u ( x ) ) d x , where for a given function g , Q g denotes its quasiconvex...

Relaxation of vectorial variational problems

Tomáš Roubíček (1995)

Mathematica Bohemica

Multidimensional vectorial non-quasiconvex variational problems are relaxed by means of a generalized-Young-functional technique. Selective first-order optimality conditions, having the form of an Euler-Weiestrass condition involving minors, are formulated in a special, rather a model case when the potential has a polyconvex quasiconvexification.

Reliable solution of parabolic obstacle problems with respect to uncertain data

Ján Lovíšek (2003)

Applications of Mathematics

A class of parabolic initial-boundary value problems is considered, where admissible coefficients are given in certain intervals. We are looking for maximal values of the solution with respect to the set of admissible coefficients. We give the abstract general scheme, proposing how to solve such problems with uncertain data. We formulate a general maximization problem and prove its solvability, provided all fundamental assumptions are fulfilled. We apply the theory to certain Fourier obstacle type...

Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions

Luděk Zajíček (2014)

Commentationes Mathematicae Universitatis Carolinae

We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on Γ -almost everywhere Fréchet differentiability of Lipschitz functions on c 0 (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at Γ -almost every x at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are Γ -almost everywhere Fréchet differentiable....

Remarks on the quasiconvex envelope of some functions depending on quadratic forms

M. Bousselsal, H. Le Dret (2002)

Bollettino dell'Unione Matematica Italiana

We compute the quasiconvex envelope of certain functions defined on the space M m n of real m × n matrices. These functions are basically functions of a quadratic form on M m n . The quasiconvex envelope computation is applied to densities that are related to the James-Ericksen elastic stored energy function.

Remarks on the theory of elasticity

Sergio Conti, Camillo de Lellis (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In compressible Neohookean elasticity one minimizes functionals which are composed by the sum of the L 2 norm of the deformation gradient and a nonlinear function of the determinant of the gradient. Non–interpenetrability of matter is then represented by additional invertibility conditions. An existence theory which includes a precise notion of invertibility and allows for cavitation was formulated by Müller and Spector in 1995. It applies, however, only if some L p -norm of the gradient with p > 2 is controlled...

Representation formulas for L∞ norms of weakly convergent sequences of gradient fields in homogenization

Robert Lipton, Tadele Mengesha (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We examine the composition of the L∞ norm with weakly convergent sequences of gradient fields associated with the homogenization of second order divergence form partial differential equations with measurable coefficients. Here the sequences of coefficients are chosen to model heterogeneous media and are piecewise constant and highly oscillatory. We identify local representation formulas that in the fine phase limit provide upper bounds on the limit superior of the L∞ norms of gradient fields. The...

Representation formulas for L∞ norms of weakly convergent sequences of gradient fields in homogenization

Robert Lipton, Tadele Mengesha (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We examine the composition of the L∞ norm with weakly convergent sequences of gradient fields associated with the homogenization of second order divergence form partial differential equations with measurable coefficients. Here the sequences of coefficients are chosen to model heterogeneous media and are piecewise constant and highly oscillatory. We identify local representation formulas that in the fine phase limit provide upper bounds on the limit...

Currently displaying 61 – 80 of 92