Displaying 41 – 60 of 232

Showing per page

Shape and topological sensitivity analysis in domains with cracks

Alexander Khludnev, Jan Sokołowski, Katarzyna Szulc (2010)

Applications of Mathematics

The framework for shape and topology sensitivity analysis in geometrical domains with cracks is established for elastic bodies in two spatial dimensions. The equilibrium problem for the elastic body with cracks is considered. Inequality type boundary conditions are prescribed at the crack faces providing a non-penetration between the crack faces. Modelling of such problems in two spatial dimensions is presented with all necessary details for further applications in shape optimization in structural...

Shape optimization by means of the penalty method with extrapolation

Ivan Hlaváček (1994)

Applications of Mathematics

A model shape optimal design in 2 is solved by means of the penalty method with extrapolation, which enables to obtain high order approximations of both the state function and the boundary flux, thus offering a reliable gradient for the sensitivity analysis. Convergence of the proposed method is proved for certain subsequences of approximate solutions.

Shape optimization in contact problems based on penalization of the state inequality

Jaroslav Haslinger, Pekka Neittaanmäki, Timo Tiihonen (1986)

Aplikace matematiky

The paper deals with the approximation of optimal shape of elastic bodies, unilaterally supported by a rigid, frictionless foundation. Original state inequality, describing the behaviour of such a body is replaced by a family of penalized state problems. The relation between optimal shapes for the original state inequality and those for penalized state equations is established.

Shape optimization of an elasto-plastic body for the model with strain- hardening

Vladislav Pištora (1990)

Aplikace matematiky

The state problem of elasto-plasticity (for the model with strain-hardening) is formulated in terms of stresses and hardening parameters by means of a time-dependent variational inequality. The optimal design problem is to find the shape of a part of the boundary such that a given cost functional is minimized. For the approximate solutions piecewise linear approximations of the unknown boundary, piecewise constant triangular elements for the stress and the hardening parameter, and backward differences...

Shape optimization of elastic axisymmetric bodies

Ivan Hlaváček (1989)

Aplikace matematiky

The shape of the meridian curve of an elastic body is optimized within a class of Lipschitz functions. Only axisymmetric mixed boundary value problems are considered. Four different cost functionals are used and approximate piecewise linear solutions defined on the basis of a finite element technique. Some convergence and existence results are derived by means of the theory of the appropriate weighted Sobolev spaces.

Shape optimization of elastoplastic bodies obeying Hencky's law

Ivan Hlaváček (1986)

Aplikace matematiky

A minimization of a cost functional with respect to a part of the boundary, where the body is fixed, is considered. The criterion is defined by an integral of a yield function. The principle of Haar-Kármán and piecewise constant stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.

Shape optimization of materially non-linear bodies in contact

Jaroslav Haslinger, Raino Mäkinen (1997)

Applications of Mathematics

Optimal shape design problem for a deformable body in contact with a rigid foundation is studied. The body is made from material obeying a nonlinear Hooke’s law. We study the existence of an optimal shape as well as its approximation with the finite element method. Practical realization with nonlinear programming is discussed. A numerical example is included.

Shape optimization problems for metric graphs

Giuseppe Buttazzo, Berardo Ruffini, Bozhidar Velichkov (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Γ):Γ ∈ 𝒜, ℋ1(Γ) = l}, where ℋ1D1,...,Dk }  ⊂ Rd . The cost functional ℰ(Γ) is the Dirichlet energy of Γ defined through the Sobolev functions on Γ vanishing on the points Di. We analyze the existence of a solution in both the families of connected sets and of metric graphs. At the end, several explicit examples are discussed.

Sharp upper bounds for a singular perturbation problem related to micromagnetics

Arkady Poliakovsky (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We construct an upper bound for the following family of functionals { E ε } ε > 0 , which arises in the study of micromagnetics: E ε ( u ) = Ω ε | u | 2 + 1 ε 2 | H u | 2 . Here Ω is a bounded domain in 2 , u H 1 ( Ω , S 1 ) (corresponding to the magnetization) and H u , the demagnetizing field created by u , is given by div ( u ˜ + H u ) = 0 in 2 , curl H u = 0 in 2 , where u ˜ is the extension of u by 0 in 2 Ω . Our upper bound coincides with the lower bound obtained by Rivière and Serfaty.

Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems

János Karátson, Sergey Korotov (2009)

Applications of Mathematics

The paper is devoted to the problem of verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model embracing nonlinear elliptic variational problems is considered in this work. Based on functional type estimates developed...

Singular perturbations in optimal control problem with application to nonlinear structural analysis

Ján Lovíšek (1996)

Applications of Mathematics

This paper concerns an optimal control problem of elliptic singular perturbations in variational inequalities (with controls appearing in coefficients, right hand sides and convex sets of states as well). The existence of an optimal control is verified. Applications to the optimal control of an elasto-plastic plate with a small rigidity and with an obstacle are presented. For elasto-plastic plates with a moving part of the boundary a primal finite element model is applied and a convergence result...

Currently displaying 41 – 60 of 232