Singular points of order of Clarke regular and arbitrary functions
Let be a separable Banach space and a locally Lipschitz real function on . For , let be the set of points , at which the Clarke subdifferential is at least -dimensional. It is well-known that if is convex or semiconvex (semiconcave), then can be covered by countably many Lipschitz surfaces of codimension . We show that this result holds even for each Clarke regular function (and so also for each approximately convex function). Motivated by a resent result of A.D. Ioffe, we prove...