Displaying 21 – 40 of 264

Showing per page

A variational solution of the A. D. Aleksandrov problem of existence of a convex polytope with prescribed Gauss curvature

Vladimir Oliker (2005)

Banach Center Publications

In his book on convex polytopes [2] A. D. Aleksandrov raised a general question of finding variational formulations and solutions to geometric problems of existence of convex polytopes in n + 1 , n ≥ 2, with prescribed geometric data. Examples of such problems for closed convex polytopes for which variational solutions are known are the celebrated Minkowski problem [2] and the Gauss curvature problem [20]. In this paper we give a simple variational proof of existence for the A. D. Aleksandrov problem...

An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints

Michael Kieweg, Yuri Iliash, Ronald H. W. Hoppe, Michael Hintermüller (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...

An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints

Michael Hintermüller, Ronald H.W. Hoppe, Yuri Iliash, Michael Kieweg (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...

An existence result for a nonconvex variational problem via regularity

Irene Fonseca, Nicola Fusco, Paolo Marcellini (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Local Lipschitz continuity of minimizers of certain integrals of the Calculus of Variations is obtained when the integrands are convex with respect to the gradient variable, but are not necessarily uniformly convex. In turn, these regularity results entail existence of minimizers of variational problems with non-homogeneous integrands nonconvex with respect to the gradient variable. The x -dependence, explicitly appearing in the integrands, adds significant technical difficulties in the proof.

An existence result for a nonconvex variational problem via regularity

Irene Fonseca, Nicola Fusco, Paolo Marcellini (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Local Lipschitz continuity of minimizers of certain integrals of the Calculus of Variations is obtained when the integrands are convex with respect to the gradient variable, but are not necessarily uniformly convex. In turn, these regularity results entail existence of minimizers of variational problems with non-homogeneous integrands nonconvex with respect to the gradient variable. The x-dependence, explicitly appearing in the integrands, adds significant technical difficulties in the proof.

An instantaneous semi-Lagrangian approach for boundary control of a melting problem

Youness Mezzan, Moulay Hicham Tber (2021)

Applications of Mathematics

In this paper, a sub-optimal boundary control strategy for a free boundary problem is investigated. The model is described by a non-smooth convection-diffusion equation. The control problem is addressed by an instantaneous strategy based on the characteristics method. The resulting time independent control problems are formulated as function space optimization problems with complementarity constraints. At each time step, the existence of an optimal solution is proved and first-order optimality conditions...

An observability estimate for parabolic equations from a measurable set in time and its applications

Kim Dang Phung, Gengsheng Wang (2013)

Journal of the European Mathematical Society

This paper presents a new observability estimate for parabolic equations in Ω × ( 0 , T ) , where Ω is a convex domain. The observation region is restricted over a product set of an open nonempty subset of Ω and a subset of positive measure in ( 0 , T ) . This estimate is derived with the aid of a quantitative unique continuation at one point in time. Applications to the bang-bang property for norm and time optimal control problems are provided.

Analyse de sensibilité d’un problème de contrôle optimal bilinéaire

Jean-Marc Clérin (2012)

Annales mathématiques Blaise Pascal

Dans cet article, nous étudions la sensibilité d’un problème de contrôle optimal de type bilinéaire. Le coût est différentiable, quadratique et strictement convexe. Le système est gouverné par un opérateur parabolique du quatrième ordre et présente une perturbation additive dans l’équation d’état, ainsi qu’une partie bilinéaire, relativement au contrôle u et à l’état z , de la forme ( u · ) z . Sous des conditions de petitesse de l’état initial et de la perturbation, nous exploitons les propriétés de régularité...

Analysis of a time optimal control problem related to the management of a bioreactor

Lino J. Alvarez-Vázquez, Francisco J. Fernández, Aurea Martínez (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a time optimal control problem arisen from the optimal management of a bioreactor devoted to the treatment of eutrophicated water. We formulate this realistic problem as a state-control constrained time optimal control problem. After analyzing the state system (a complex system of coupled partial differential equations with non-smooth coefficients for advection-diffusion-reaction with Michaelis-Menten kinetics, modelling the eutrophication processes) we demonstrate the existence of,...

Analysis of a time optimal control problem related to the management of a bioreactor***

Lino J. Alvarez-Vázquez, Francisco J. Fernández, Aurea Martínez (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a time optimal control problem arisen from the optimal management of a bioreactor devoted to the treatment of eutrophicated water. We formulate this realistic problem as a state-control constrained time optimal control problem. After analyzing the state system (a complex system of coupled partial differential equations with non-smooth coefficients for advection-diffusion-reaction with Michaelis-Menten kinetics, modelling the eutrophication processes) we demonstrate the existence of,...

Application of the optimal control theory to the wastewater elimination problem.

Lino José Alvarez-Vázquez, Alfredo Bermúdez, Aurea Martínez, Carmen Rodríguez, Miguel Ernesto Vázquez-Méndez (2002)

RACSAM

The main goal of this paper is to show some applications of the optimal control theory to the wastewater elimination problem. Firstly, we deal with the numerical simulation of a given situation. We present a suitable mathematical model, propose a method to solve it and show the numerical results for a realistic situation in the ría of Arousa (Spain). Secondly, in the same framework of wastewater elimination problem, we pose two economic-environmental problems which can be formulated as constrained...

Arrow-type sufficient conditions for optimality of age-structured control problems

Vladimir Krastev (2013)

Open Mathematics

We consider a class of age-structured control problems with nonlocal dynamics and boundary conditions. For these problems we suggest Arrow-type sufficient conditions for optimality of problems defined on finite as well as infinite time intervals. We examine some models as illustrations (optimal education and optimal offence control problems).

Boundary integral representations of second derivatives in shape optimization

Karsten Eppler (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

For a shape optimization problem second derivatives are investigated, obtained by a special approach for the description of the boundary variation and the use of a potential ansatz for the state. The natural embedding of the problem in a Banach space allows the application of a standard differential calculus in order to get second derivatives by a straight forward "repetition of differentiation". Moreover, by using boundary value characerizations for more regular data, a complete boundary integral...

Currently displaying 21 – 40 of 264