Displaying 281 – 300 of 315

Showing per page

Turnpike theorems by a value function approach

Alain Rapaport, Pierre Cartigny (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Turnpike theorems deal with the optimality of trajectories reaching a singular solution, in calculus of variations or optimal control problems. For scalar calculus of variations problems in infinite horizon, linear with respect to the derivative, we use the theory of viscosity solutions of Hamilton-Jacobi equations to obtain a unique characterization of the value function. With this approach, we extend for the scalar case the classical result based on Green theorem, when there is uniqueness of...

Two Numerical Methods for the elliptic Monge-Ampère equation

Jean-David Benamou, Brittany D. Froese, Adam M. Oberman (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The numerical solution of the elliptic Monge-Ampère Partial Differential Equation has been a subject of increasing interest recently [Glowinski, in 6th International Congress on Industrial and Applied Mathematics, ICIAM 07, Invited Lectures (2009) 155–192; Oliker and Prussner, Numer. Math.54 (1988) 271–293; Oberman, Discrete Contin. Dyn. Syst. Ser. B10 (2008) 221–238; Dean and Glowinski, in Partial differential equations, Comput. Methods Appl. Sci. 16 (2008) 43–63; Glowinski et al., Japan...

Unbounded viscosity solutions of hybrid control systems

Guy Barles, Sheetal Dharmatti, Mythily Ramaswamy (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study a hybrid control system in which both discrete and continuous controls are involved. The discrete controls act on the system at a given set interface. The state of the system is changed discontinuously when the trajectory hits predefined sets, namely, an autonomous jump set A or a controlled jump set C where controller can choose to jump or not. At each jump, trajectory can move to a different Euclidean space. We allow the cost functionals to be unbounded with certain growth and hence...

Value functions for Bolza problems with discontinuous Lagrangians and Hamilton-Jacobi inequalities

Gianni Dal Maso, Hélène Frankowska (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the value function of the Bolza problem of the Calculus of Variations
 V ( t , x ) = inf 0 t L ( y ( s ) , y ' ( s ) ) d s + ϕ ( y ( t ) ) : y W 1 , 1 ( 0 , t ; n ) , y ( 0 ) = x , with a lower semicontinuous Lagrangian L and a final cost ϕ , and show that it is locally Lipschitz for t>0 whenever L is locally bounded. It also satisfies Hamilton-Jacobi inequalities in a generalized sense. When the Lagrangian is continuous, then the value function is the unique lower semicontinuous solution to the corresponding Hamilton-Jacobi equation, while for discontinuous Lagrangian we characterize...

Viability, invariance and reachability for controlled piecewise deterministic Markov processes associated to gene networks

Dan Goreac (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We aim at characterizing viability, invariance and some reachability properties of controlled piecewise deterministic Markov processes (PDMPs). Using analytical methods from the theory of viscosity solutions, we establish criteria for viability and invariance in terms of the first order normal cone. We also investigate reachability of arbitrary open sets. The method is based on viscosity techniques and duality for some associated linearized problem. The theoretical results are applied to general...

Viability, invariance and reachability for controlled piecewise deterministic Markov processes associated to gene networks

Dan Goreac (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We aim at characterizing viability, invariance and some reachability properties of controlled piecewise deterministic Markov processes (PDMPs). Using analytical methods from the theory of viscosity solutions, we establish criteria for viability and invariance in terms of the first order normal cone. We also investigate reachability of arbitrary open sets. The method is based on viscosity techniques and duality for some associated linearized problem. The theoretical results are applied to general...

Viability, invariance and reachability for controlled piecewise deterministic Markov processes associated to gene networks

Dan Goreac (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We aim at characterizing viability, invariance and some reachability properties of controlled piecewise deterministic Markov processes (PDMPs). Using analytical methods from the theory of viscosity solutions, we establish criteria for viability and invariance in terms of the first order normal cone. We also investigate reachability of arbitrary open sets. The method is based on viscosity techniques and duality for some associated linearized problem. The theoretical results are applied to general...

Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities

Fabio Bagagiolo (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.

Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities

Fabio Bagagiolo (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.

Viscosity solutions methods for converse KAM theory

Diogo A. Gomes, Adam Oberman (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The main objective of this paper is to prove new necessary conditions to the existence of KAM tori. To do so, we develop a set of explicit a-priori estimates for smooth solutions of Hamilton-Jacobi equations, using a combination of methods from viscosity solutions, KAM and Aubry-Mather theories. These estimates are valid in any space dimension, and can be checked numerically to detect gaps between KAM tori and Aubry-Mather sets. We apply these results to detect non-integrable regions in several...

Currently displaying 281 – 300 of 315