Displaying 121 – 140 of 315

Showing per page

Exponential convergence for a convexifying equation

Guillaume Carlier, Alfred Galichon (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an evolution equation similar to that introduced by Vese in [Comm. Partial Diff. Eq. 24 (1999) 1573–1591] and whose solution converges in large time to the convex envelope of the initial datum. We give a stochastic control representation for the solution from which we deduce, under quite general assumptions that the convergence in the Lipschitz norm is in fact exponential in time.

Exponential convergence for a convexifying equation

Guillaume Carlier, Alfred Galichon (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an evolution equation similar to that introduced by Vese in [Comm. Partial Diff. Eq. 24 (1999) 1573–1591] and whose solution converges in large time to the convex envelope of the initial datum. We give a stochastic control representation for the solution from which we deduce, under quite general assumptions that the convergence in the Lipschitz norm is in fact exponential in time.

Exponential convergence for a convexifying equation

Guillaume Carlier, Alfred Galichon (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an evolution equation similar to that introduced by Vese in [Comm. Partial Diff. Eq. 24 (1999) 1573–1591] and whose solution converges in large time to the convex envelope of the initial datum. We give a stochastic control representation for the solution from which we deduce, under quite general assumptions that the convergence in the Lipschitz norm is in fact exponential in time.

Geometric constraints on the domain for a class of minimum problems

Graziano Crasta, Annalisa Malusa (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We consider minimization problems of the form min u ϕ + W 0 1 , 1 ( Ω ) Ω [ f ( D u ( x ) ) - u ( x ) ] d x where Ω N is a bounded convex open set, and the Borel function f : N [ 0 , + ] is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of Ω and the zero level set of f , we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.

Geometric constraints on the domain for a class of minimum problems

Graziano Crasta, Annalisa Malusa (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider minimization problems of the form min u ϕ + W 0 1 , 1 ( Ω ) Ω [ f ( D u ( x ) ) - u ( x ) ] d x where Ω N is a bounded convex open set, and the Borel function f : N [ 0 , + ] is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of Ω and the zero level set of f, we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.

Graph selectors and viscosity solutions on Lagrangian manifolds

David McCaffrey (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Let Λ be a Lagrangian submanifold of T * X for some closed manifold X. Let S ( x , ξ ) be a generating function for Λ which is quadratic at infinity, and let W(x) be the corresponding graph selector for Λ , in the sense of Chaperon-Sikorav-Viterbo, so that there exists a subset X 0 X of measure zero such that W is Lipschitz continuous on X, smooth on X X 0 and ( x , W / x ( x ) ) Λ for X X 0 . Let H(x,p)=0 for ( x , p ) Λ . Then W is a classical solution to H ( x , W / x ( x ) ) = 0 on X X 0 and extends to a Lipschitz function on the whole of X. Viterbo refers to W as a variational...

Hamilton–Jacobi equations and two-person zero-sum differential games with unbounded controls

Hong Qiu, Jiongmin Yong (2013)

ESAIM: Control, Optimisation and Calculus of Variations

A two-person zero-sum differential game with unbounded controls is considered. Under proper coercivity conditions, the upper and lower value functions are characterized as the unique viscosity solutions to the corresponding upper and lower Hamilton–Jacobi–Isaacs equations, respectively. Consequently, when the Isaacs’ condition is satisfied, the upper and lower value functions coincide, leading to the existence of the value function of the differential game. Due to the unboundedness of the controls,...

Hamilton-Jacobi equations for control problems of parabolic equations

Sophie Gombao, Jean-Pierre Raymond (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We study Hamilton-Jacobi equations related to the boundary (or internal) control of semilinear parabolic equations, including the case of a control acting in a nonlinear boundary condition, or the case of a nonlinearity of Burgers' type in 2D. To deal with a control acting in a boundary condition a fractional power ( - A ) β – where (A,D(A)) is an unbounded operator in a Hilbert space X – is contained in the Hamiltonian functional appearing in the Hamilton-Jacobi equation. This situation has already...

Hamilton-Jacobi flows and characterization of solutions of Aronsson equations

Petri Juutinen, Eero Saksman (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this note, we verify the conjecture of Barron, Evans and Jensen [3] regarding the characterization of viscosity solutions of general Aronsson equations in terms of the properties of associated forward and backwards Hamilton-Jacobi flows. A special case of this result is analogous to the characterization of infinity harmonic functions in terms of convexity and concavity of the functions r max y B r ( x ) u ( y ) and r min y B r ( x ) u ( y ) , respectively.

Currently displaying 121 – 140 of 315