Constrained optimization via unconstrained minimization
If the material of the bodies is elastic perfectly plastic, obeying the Hencky's law, the formulation in terms of stresses is more suitable than that in displacements. The Haar-Kármán principle is first extended to the case of a unilateral contact between two bodies without friction. Approximations are proposed by means of piecewise constant triangular finite elements. Convergence of the method is proved for any regular family of triangulations.
In this paper, we propose a new class of adaptive trust region methods for unconstrained optimization problems and develop some convergence properties. In the new algorithms, we use the current iterative information to define a suitable initial trust region radius at each iteration. The initial trust region radius is more reasonable in the sense that the trust region model and the objective function are more consistent at the current iterate. The global convergence, super-linear and quadratic convergence...
This paper characterizes completely the behavior of the logarithmic barrier method under a standard second order condition, strict (multivalued) complementarity and MFCQ at a local minimizer. We present direct proofs, based on certain key estimates and few well–known facts on linear and parametric programming, in order to verify existence and Lipschitzian convergence of local primal-dual solutions without applying additionally technical tools arising from Newton–techniques.
Differential evolution algorithm combined with chaotic pattern search(DE-CPS) for global optimization is introduced to improve the performance of simple DE algorithm. Pattern search algorithm using chaotic variables instead of random variables is used to accelerate the convergence of solving the objective value. Experiments on 6 benchmark problems, including morbid Rosenbrock function, show that the novel hybrid algorithm is effective for nonlinear optimization problems in high dimensional space....
In this paper, we propose a novel algorithm for solving an optimal boundary control problem of the Burgers' equation. The solving method is based on the transformation of the original problem into a homogeneous boundary conditions problem. This transforms the original problem into an optimal distributed control problem. The modal expansion technique is applied to the distributed control problem of the Burgers' equation to generate a low-dimensional dynamical system. The control parametrization method...
For a class of elastic-plastic constitutive laws with nonlinear kinematic and isotropic hardening, the problem of determining the response to a finite load step is formulated according to an implicit backward difference scheme (stepwise holonomic formulation), with reference to discrete structural models. This problem is shown to be amenable to a nonlinear mathematical programming problem and a criterion is derived which guarantees monotonie convergence of an iterative algorithm for the solution...
A numerically inexpensive globalization strategy of sequential quadratic programming methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated. Based on the proper functional analytic setting a convergence analysis for the globalized method is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical test demonstrates the feasibility...
A numerically inexpensive globalization strategy of sequential quadratic programming methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated. Based on the proper functional analytic setting a convergence analysis for the globalized method is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical test demonstrates the feasibility...
We study variational problems with volume constraints, i.e., with level sets of prescribed measure. We introduce a numerical method to approximate local minimizers and illustrate it with some two-dimensional examples. We demonstrate numerically nonexistence results which had been obtained analytically in previous work. Moreover, we show the existence of discontinuous dependence of global minimizers from the data by using a Γ-limit argument and illustrate this with numerical computations. Finally...
In this article, a technique called Meta-Optimization is used to enhance the effectiveness of bio-inspired algorithms that solve antenna array synthesis problems. This technique consists on a second optimization layer that finds the best behavioral parameters for a given algorithm, which allows to achieve better results. Bio-inspired computational methods are useful to solve complex multidimensional problems such as the design of antenna arrays. However, their performance depends heavily on the...