Page 1 Next

Displaying 1 – 20 of 30

Showing per page

Partial regularity for anisotropic functionals of higher order

Menita Carozza, Antonia Passarelli di Napoli (2007)

ESAIM: Control, Optimisation and Calculus of Variations


We prove a C k , α partial regularity result for local minimizers of variational integrals of the type I ( u ) = Ω f ( D k u ( x ) ) d x , assuming that the integrand f satisfies (p,q) growth conditions.


Partial regularity of minimizers of higher order integrals with (p, q)-growth

Sabine Schemm (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider higher order functionals of the form F [ u ] = Ω f ( D m u ) d x for u : n Ω N , where the integrand f : m ( n , N ) , m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition γ | A | p f ( A ) L ( 1 + | A | q ) for all A m ( n , N ) , with γ, L > 0 and 1 < p q < min { p + 1 n , 2 n - 1 2 n - 2 p } . We study minimizers of the functional F [ · ] and prove a partial C loc m , α -regularity result.

Partial regularity of minimizers of higher order integrals with (p, q)-growth

Sabine Schemm (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider higher order functionals of the form F [ u ] = Ω f ( D m u ) d x for u : n Ω N , where the integrand f : m ( n , N ) , m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition γ | A | p f ( A ) L ( 1 + | A | q ) for all A m ( n , N ) , with γ, L > 0 and 1 < p q < min { p + 1 n , 2 n - 1 2 n - 2 p } . We study minimizers of the functional F [ · ] and prove a partial C loc m , α -regularity result.

Penalization of Dirichlet optimal control problems

Eduardo Casas, Mariano Mateos, Jean-Pierre Raymond (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We apply Robin penalization to Dirichlet optimal control problems governed by semilinear elliptic equations. Error estimates in terms of the penalization parameter are stated. The results are compared with some previous ones in the literature and are checked by a numerical experiment. A detailed study of the regularity of the solutions of the PDEs is carried out.

Penalization of Dirichlet optimal control problems

Eduardo Casas, Mariano Mateos, Jean-Pierre Raymond (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We apply Robin penalization to Dirichlet optimal control problems governed by semilinear elliptic equations. Error estimates in terms of the penalization parameter are stated. The results are compared with some previous ones in the literature and are checked by a numerical experiment. A detailed study of the regularity of the solutions of the PDEs is carried out.

Periodic stabilization for linear time-periodic ordinary differential equations

Gengsheng Wang, Yashan Xu (2014)

ESAIM: Control, Optimisation and Calculus of Variations

This paper studies the periodic feedback stabilization of the controlled linear time-periodic ordinary differential equation: ẏ(t) = A(t)y(t) + B(t)u(t), t ≥ 0, where [A(·), B(·)] is a T-periodic pair, i.e., A(·) ∈ L∞(ℝ+; ℝn×n) and B(·) ∈ L∞(ℝ+; ℝn×m) satisfy respectively A(t + T) = A(t) for a.e. t ≥ 0 and B(t + T) = B(t) for a.e. t ≥ 0. Two periodic stablization criteria for a T-period pair [A(·), B(·)] are established. One is an analytic criterion which is related to the transformation over time...

Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations

Luís Balsa Bicho, António Ornelas (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We prove uniformcontinuity of radiallysymmetric vector minimizers uA(x) = UA(|x|) to multiple integrals ∫BRL**(u(x), |Du(x)|) dx on a ballBR ⊂ ℝd, among the Sobolev functions u(·) in A+W01,1 (BR, ℝm), using a jointlyconvexlscL∗∗ : ℝm×ℝ → [0,∞] with L∗∗(S,·) even and superlinear. Besides such basic hypotheses, L∗∗(·,·) is assumed to satisfy also a geometrical constraint, which we call quasi − scalar; the simplest example being the biradial case L∗∗(|u(x)|,|Du(x)|). Complete liberty is given for L∗∗(S,λ)...

Currently displaying 1 – 20 of 30

Page 1 Next