Displaying 421 – 440 of 597

Showing per page

Receding horizon optimal control for infinite dimensional systems

Kazufumi Ito, Karl Kunisch (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The receding horizon control strategy for dynamical systems posed in infinite dimensional spaces is analysed. Its stabilising property is verified provided control Lyapunov functionals are used as terminal penalty functions. For closed loop dissipative systems the terminal penalty can be chosen as quadratic functional. Applications to the Navier–Stokes equations, semilinear wave equations and reaction diffusion systems are given.

Receding horizon optimal control for infinite dimensional systems

Kazufumi Ito, Karl Kunisch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The receding horizon control strategy for dynamical systems posed in infinite dimensional spaces is analysed. Its stabilising property is verified provided control Lyapunov functionals are used as terminal penalty functions. For closed loop dissipative systems the terminal penalty can be chosen as quadratic functional. Applications to the Navier–Stokes equations, semilinear wave equations and reaction diffusion systems are given.

Reconfigurable control design with integration of a reference governor and reliability indicators

Philippe Weber, Boumedyen Boussaid, Ahmed Khelassi, Christophe Aubrun (2012)

International Journal of Applied Mathematics and Computer Science

A new approach to manage actuator redundancy in the presence of faults is proposed based on reliability indicators and a reference governor. The aim is to preserve the health of the actuators and the availability of the system both in the nominal behavior and in the presence of actuator faults. The use of reference governor control allocation is a solution to distribute the control efforts among a redundant set of actuators. In a degraded situation, a reconfigured control allocation strategy is...

Regional control problem for distributed bilinear systems: Approach and simulations

Karima Ztot, El Hassan Zerrik, Hamid Bourray (2011)

International Journal of Applied Mathematics and Computer Science

This paper investigates the regional control problem for infinite dimensional bilinear systems. We develop an approach that characterizes the optimal control and leads to a numerical algorithm. The obtained results are successfully illustrated by simulations.

Regular syntheses and solutions to discontinuous ODEs

Alessia Marigo, Benedetto Piccoli (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyze several concepts of solution to discontinuous ODEs in relation to feedbacks generated by optimal syntheses. Optimal trajectories are called Stratified Solutions in case of regular synthesis in the sense of Boltyanskii–Brunovsky. We introduce a concept of solution called Krasowskii Cone Robust that characterizes optimal trajectories for minimum time on the plane and for general problems under suitable assumptions.

Regular syntheses and solutions to discontinuous ODEs

Alessia Marigo, Benedetto Piccoli (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyze several concepts of solution to discontinuous ODEs in relation to feedbacks generated by optimal syntheses. Optimal trajectories are called Stratified Solutions in case of regular synthesis in the sense of Boltyanskii-Brunovsky. We introduce a concept of solution called Krasowskii Cone Robust that characterizes optimal trajectories for minimum time on the plane and for general problems under suitable assumptions.

Régularité du problème de Kelvin–Helmholtz pour l’équation d’Euler 2D

Gilles Lebeau (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Nous prouvons que pour toute solution u du problème de Kelvin–Helmholtz des nappes de tourbillons pour l’équation d’Euler bi-dimensionnelle, définie localement en temps, la courbe de saut de u et la densité de tourbillon sont analytiques (sous une hypothèse de régularité Holderienne de la courbe de saut). Nous donnons également un résultat de régularité partielle de la trace de u sur t = 0 lorsque u est définie sur un demi-interval [ O , T [ .

Régularité du problème de Kelvin–Helmholtz pour l'équation d'Euler 2d

Gilles Lebeau (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Nous prouvons que pour toute solution u du problème de Kelvin–Helmholtz des nappes de tourbillons pour l'équation d'Euler bi-dimensionnelle, définie localement en temps, la courbe de saut de u et la densité de tourbillon sont analytiques (sous une hypothèse de régularité Holderienne de la courbe de saut). Nous donnons également un résultat de régularité partielle de la trace de u sur t=0 lorsque u est définie sur un demi-interval [O,T[.

Regularity along optimal trajectories of the value function of a Mayer problem

Carlo Sinestrari (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem of Mayer type and prove that, under suitable conditions on the system, the value function is differentiable along optimal trajectories, except possibly at the endpoints. We provide counterexamples to show that this property may fail to hold if some of our conditions are violated. We then apply our regularity result to derive optimality conditions for the trajectories of the system.

Regularity along optimal trajectories of the value function of a Mayer problem

Carlo Sinestrari (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem of Mayer type and prove that, under suitable conditions on the system, the value function is differentiable along optimal trajectories, except possibly at the endpoints. We provide counterexamples to show that this property may fail to hold if some of our conditions are violated. We then apply our regularity result to derive optimality conditions for the trajectories of the system.

Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity

Andrea C. G. Mennucci (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We formulate an Hamilton-Jacobi partial differential equation H ( x , D u ( x ) ) = 0 on a n dimensional manifold M , with assumptions of convexity of H ( x , · ) and regularity of H (locally in a neighborhood of { H = 0 } in T * M ); we define the “min solution” u , a generalized solution; to this end, we view T * M as a symplectic manifold. The definition of “min solution” is suited to proving regularity results about u ; in particular, we prove in the first part that the closure of the set where u is not regular may be covered by a countable number...

Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: Regularity

Andrea C.G. Mennucci (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We formulate an Hamilton-Jacobi partial differential equation H( x, D u(x))=0 on a n dimensional manifold M, with assumptions of convexity of H(x, .) and regularity of H (locally in a neighborhood of {H=0} in T*M); we define the “minsol solution” u, a generalized solution; to this end, we view T*M as a symplectic manifold. The definition of “minsol solution” is suited to proving regularity results about u; in particular, we prove in the first part that the closure of the set where...

Currently displaying 421 – 440 of 597