The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 61 – 80 of 218

Showing per page

First variation of the general curvature-dependent surface energy

Günay Doğan, Ricardo H. Nochetto (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider general surface energies, which are weighted integrals over a closed surface with a weight function depending on the position, the unit normal and the mean curvature of the surface. Energies of this form have applications in many areas, such as materials science, biology and image processing. Often one is interested in finding a surface that minimizes such an energy, which entails finding its first variation with respect to perturbations of the surface. We present a concise derivation...

First variation of the general curvature-dependent surface energy

Günay Doğan, Ricardo H. Nochetto (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider general surface energies, which are weighted integrals over a closed surface with a weight function depending on the position, the unit normal and the mean curvature of the surface. Energies of this form have applications in many areas, such as materials science, biology and image processing. Often one is interested in finding a surface that minimizes such an energy, which entails finding its first variation with respect to perturbations of the surface. We present a concise derivation...

Global minimizer of the ground state for two phase conductors in low contrast regime

Antoine Laurain (2014)

ESAIM: Control, Optimisation and Calculus of Variations

The problem of distributing two conducting materials with a prescribed volume ratio in a ball so as to minimize the first eigenvalue of an elliptic operator with Dirichlet conditions is considered in two and three dimensions. The gap ε between the two conductivities is assumed to be small (low contrast regime). The main result of the paper is to show, using asymptotic expansions with respect to ε and to small geometric perturbations of the optimal shape, that the global minimum of the first eigenvalue...

Global minimizers for axisymmetric multiphase membranes

Rustum Choksi, Marco Morandotti, Marco Veneroni (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous...

Hybrid level set phase field method for topology optimization of contact problems

Andrzej Myśliński, Konrad Koniarski (2015)

Mathematica Bohemica

The paper deals with the analysis and the numerical solution of the topology optimization of system governed by variational inequalities using the combined level set and phase field rather than the standard level set approach. The standard level set method allows to evolve a given sharp interface but is not able to generate holes unless the topological derivative is used. The phase field method indicates the position of the interface in a blurry way but is flexible in the holes generation. In the...

Inverse modelling of image-based patient-specific blood vessels: zero-pressure geometry and in vivo stress incorporation

Joris Bols, Joris Degroote, Bram Trachet, Benedict Verhegghe, Patrick Segers, Jan Vierendeels (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In vivo visualization of cardiovascular structures is possible using medical images. However, one has to realize that the resulting 3D geometries correspond to in vivo conditions. This entails an internal stress state to be present in the in vivo measured geometry of e.g. a blood vessel due to the presence of the blood pressure. In order to correct for this in vivo stress, this paper presents an inverse method to restore the original zero-pressure geometry of a structure, and to recover the in vivo...

Currently displaying 61 – 80 of 218