Page 1

Displaying 1 – 6 of 6

Showing per page

Barriers for a class of geometric evolution problems

Giovanni Bellettini, Matteo Novaga (1997)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We present some general results on minimal barriers in the sense of De Giorgi for geometric evolution problems. We also compare minimal barriers with viscosity solutions for fully nonlinear geometric problems of the form u t + F t , x , u , 2 u = 0 . If F is not degenerate elliptic, it turns out that we obtain the same minimal barriers if we replace F with F + , which is defined as the smallest degenerate elliptic function above F .

Best constants for the isoperimetric inequality in quantitative form

Marco Cicalese, Gian Paolo Leonardi (2013)

Journal of the European Mathematical Society

We prove some results in the context of isoperimetric inequalities with quantitative terms. In the 2 -dimensional case, our main contribution is a method for determining the optimal coefficients c 1 , ... , c m in the inequality δ P ( E ) k = 1 m c k α ( E ) k + o ( α ( E ) m ) , valid for each Borel set E with positive and finite area, with δ P ( E ) and α ( E ) being, respectively, the 𝑖𝑠𝑜𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑟𝑖𝑐𝑑𝑒𝑓𝑖𝑐𝑖𝑡 and the 𝐹𝑟𝑎𝑒𝑛𝑘𝑒𝑙𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 of E . In n dimensions, besides proving existence and regularity properties of minimizers for a wide class of 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒𝑖𝑠𝑜𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑟𝑖𝑐𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡𝑠 including the lower semicontinuous extension of δ P ( E ) α ( E ) 2 , we describe the...

BV solutions and viscosity approximations of rate-independent systems

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In the nonconvex case, solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate-independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential that is a viscous regularization of a given rate-independent dissipation...

BV solutions and viscosity approximations of rate-independent systems∗

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In the nonconvex case, solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate-independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential that is a viscous regularization...

Currently displaying 1 – 6 of 6

Page 1