Page 1 Next

Displaying 1 – 20 of 33

Showing per page

Shape optimization problems for metric graphs

Giuseppe Buttazzo, Berardo Ruffini, Bozhidar Velichkov (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Γ):Γ ∈ 𝒜, ℋ1(Γ) = l}, where ℋ1D1,...,Dk }  ⊂ Rd . The cost functional ℰ(Γ) is the Dirichlet energy of Γ defined through the Sobolev functions on Γ vanishing on the points Di. We analyze the existence of a solution in both the families of connected sets and of metric graphs. At the end, several explicit examples are discussed.

Sharp summability for Monge transport density via interpolation

Luigi De Pascale, Aldo Pratelli (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Using some results proved in De Pascale and Pratelli [Calc. Var. Partial Differ. Equ. 14 (2002) 249-274] (and De Pascale et al. [Bull. London Math. Soc. 36 (2004) 383-395]) and a suitable interpolation technique, we show that the transport density relative to an L p source is also an L p function for any 1 p + .

Sharp summability for Monge Transport density via Interpolation

Luigi De Pascale, Aldo Pratelli (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Using some results proved in De Pascale and Pratelli [Calc. Var. Partial Differ. Equ.14 (2002) 249-274] (and De Pascale et al. [Bull. London Math. Soc.36 (2004) 383-395]) and a suitable interpolation technique, we show that the transport density relative to an Lp source is also an Lp function for any 1 p + .

Simmetrizzazione e disuguaglianze di tipo Pòlya-Szegö

Nicola Fusco (2005)

Bollettino dell'Unione Matematica Italiana

Si presentano alcuni risultati recenti riguardanti la disuguaglianza di Pòlya- Szegö e la caratterizzazione dei casi in cui essa si riduce ad un'uguaglianza. Particolare attenzione viene rivolta alla simmetrizzazione di Steiner di insiemi di perimetro finito e di funzioni di Sobolev.

Smooth optimal synthesis for infinite horizon variational problems

Andrei A. Agrachev, Francesca C. Chittaro (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We study Hamiltonian systems which generate extremal flows of regular variational problems on smooth manifolds and demonstrate that negativity of the generalized curvature of such a system implies the existence of a global smooth optimal synthesis for the infinite horizon problem. We also show that in the Euclidean case negativity of the generalized curvature is a consequence of the convexity of the Lagrangian with respect to the pair of arguments. Finally, we give a generic classification for...

Some regularity results for minimal crystals

L. Ambrosio, M. Novaga, E. Paolini (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We introduce an intrinsic notion of perimeter for subsets of a general Minkowski space ( i . e . a finite dimensional Banach space in which the norm is not required to be even). We prove that this notion of perimeter is equivalent to the usual definition of surface energy for crystals and we study the regularity properties of the minimizers and the quasi-minimizers of perimeter. In the two-dimensional case we obtain optimal regularity results: apart from a singular set (which is 1 -negligible and is empty...

Some regularity results for minimal crystals

L. Ambrosio, M. Novaga, E. Paolini (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We introduce an intrinsic notion of perimeter for subsets of a general Minkowski space (i.e. a finite dimensional Banach space in which the norm is not required to be even). We prove that this notion of perimeter is equivalent to the usual definition of surface energy for crystals and we study the regularity properties of the minimizers and the quasi-minimizers of perimeter. In the two-dimensional case we obtain optimal regularity results: apart from a singular set (which is 1 -negligible and is...

Some remarks about the p -Dirichlet integral

Mariano Giaquinta, Giuseppe Modica, Jiří Souček (1994)

Commentationes Mathematicae Universitatis Carolinae

We discuss variational problems for the p -Dirichlet integral, p non integer, for maps between manifolds, illustrating the role played by the geometry of the target manifold in their weak formulation.

Stability of the Steiner symmetrization of convex sets

Marco Barchiesi, Filippo Cagnetti, Nicola Fusco (2013)

Journal of the European Mathematical Society

The isoperimetric inequality for Steiner symmetrization of any codimension is investigated and the equality cases are characterized. Moreover, a quantitative version of this inequality is proven for convex sets.

Currently displaying 1 – 20 of 33

Page 1 Next