Page 1 Next

Displaying 1 – 20 of 35

Showing per page

The BV-energy of maps into a manifold : relaxation and density results

Mariano Giaquinta, Domenico Mucci (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let  𝒴   be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its 1 -homology group has notorsion. Weak limits of graphs of smooth maps  u k : B n 𝒴   with equibounded total variation give riseto equivalence classes of cartesian currents in  cart 1 , 1 ( B n 𝒴 )   for which we introduce a natural B V -energy.Assume moreover that the first homotopy group of   𝒴   iscommutative. In any dimension   n   we prove that every element  T   in   cart 1 , 1 ( B n 𝒴 )   can be approximatedweakly in the sense of currents by a sequence of graphs...

The Curvature of a Set with Finite Area

Elisabetta Barozzi (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In a paper, by myself, E. Gonzalez and I. Tamanini (see [2]), it was proven that all sets of finite perimeter do have a non trivial variational property, connected with the mean curvature of their boundaries. In the present article, that variational property is made more precise.

The double bubble conjecture.

Hass, Joel, Hutchings, Michael, Schlafly, Roger (1995)

Electronic Research Announcements of the American Mathematical Society [electronic only]

The formation of a tree leaf

Qinglan Xia (2007)

ESAIM: Control, Optimisation and Calculus of Variations

In this article, we build a mathematical model to understand the formation of a tree leaf. Our model is based on the idea that a leaf tends to maximize internal efficiency by developing an efficient transport system for transporting water and nutrients. The meaning of “the efficient transport system” may vary as the type of the tree leave varies. In this article, we will demonstrate that tree leaves have different shapes and venation patterns mainly because they have adopted different efficient...

The H–1-norm of tubular neighbourhoods of curves

Yves van Gennip, Mark A. Peletier (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We study the H–1-norm of the function 1 on tubular neighbourhoods of curves in 2 . We take the limit of small thicknessε, and we prove two different asymptotic results. The first is an asymptotic development for a fixed curve in the limit ε → 0, containing contributions from the length of the curve (at order ε3), the ends (ε4), and the curvature (ε5). The second result is a Γ-convergence result, in which the central curve may vary along the sequence ε → 0. We prove that a rescaled version of the...

The H–1-norm of tubular neighbourhoods of curves

Yves van Gennip, Mark A. Peletier (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We study the H–1-norm of the function 1 on tubular neighbourhoods of curves in 2 . We take the limit of small thickness ε, and we prove two different asymptotic results. The first is an asymptotic development for a fixed curve in the limit ε → 0, containing contributions from the length of the curve (at order ε3), the ends (ε4), and the curvature (ε5). The second result is a Γ-convergence result, in which the central curve may vary along the sequence ε → 0. We prove that a rescaled version of...

The mean curvature of a Lipschitz continuous manifold

Elisabetta Barozzi, Eduardo Gonzalez, Umberto Massari (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The paper is devoted to the description of some connections between the mean curvature in a distributional sense and the mean curvature in a variational sense for several classes of non-smooth sets. We prove the existence of the mean curvature measure of E by using a technique introduced in [4] and based on the concept of variational mean curvature. More precisely we prove that, under suitable assumptions, the mean curvature measure of E is the weak limit (in the sense of distributions) of the mean...

The Monge problem for strictly convex norms in d

Thierry Champion, Luigi De Pascale (2010)

Journal of the European Mathematical Society

We prove the existence of an optimal transport map for the Monge problem in a convex bounded subset of d under the assumptions that the first marginal is absolutely continuous with respect to the Lebesgue measure and that the cost is given by a strictly convex norm. We propose a new approach which does not use disintegration of measures.

The nonlinear membrane model : a Young measure and varifold formulation

Med Lamine Leghmizi, Christian Licht, Gérard Michaille (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We establish two new formulations of the membrane problem by working in the space of W Γ 0 1 , p ( Ω , 𝐑 3 ) -Young measures and W Γ 0 1 , p ( Ω , 𝐑 3 ) -varifolds. The energy functional related to these formulations is obtained as a limit of the 3 d formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing sequences...

The nonlinear membrane model: a Young measure and varifold formulation

Med Lamine Leghmizi, Christian Licht, Gérard Michaille (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We establish two new formulations of the membrane problem by working in the space of W Γ 0 1 , p ( Ω , 𝐑 3 ) -Young measures and W Γ 0 1 , p ( Ω , 𝐑 3 ) -varifolds. The energy functional related to these formulations is obtained as a limit of the 3d formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing...

The parametric Weierstrass integral over a BV curve as a length functional

Loris Faina (1998)

Studia Mathematica

The constructive definition of the Weierstrass integral through only one limit process over finite sums is often preferable to the more sophisticated definition of the Serrin integral, especially for approximation purposes. By proving that the Weierstrass integral over a BV curve is a length functional with respect to a suitable metric, we discover a further natural reason for studying the Weierstrass integral. This characterization was conjectured by Menger.

The smooth continuation method in optimal control with an application to quantum systems

Bernard Bonnard, Nataliya Shcherbakova, Dominique Sugny (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The motivation of this article is double. First of all we provide a geometrical framework to the application of the smooth continuation method in optimal control, where the concept of conjugate points is related to the convergence of the method. In particular, it can be applied to the analysis of the global optimality properties of the geodesic flows of a family of Riemannian metrics. Secondly, this study is used to complete the analysis of two-level dissipative quantum systems, where the system...

Currently displaying 1 – 20 of 35

Page 1 Next