Parametric and Non-Parametric Minima.
Given a metric space we consider a general class of functionals which measure the cost of a path in joining two given points and , providing abstract existence results for optimal paths. The results are then applied to the case when is aWasserstein space of probabilities on a given set and the cost of a path depends on the value of classical functionals over measures. Conditions for linking arbitrary extremal measures and by means of finite cost paths are given.
We investigate Prékopa-Leindler type inequalities on a Riemannian manifold equipped with a measure with density where the potential and the Ricci curvature satisfy for all , with some . As in our earlier work [14], the argument uses optimal mass transport on , but here, with a special emphasis on its connection with Jacobi fields. A key role will be played by the differential equation satisfied by the determinant of a matrix of Jacobi fields. We also present applications of the method...
On donne un développement asymptotique du profil iso pé ri mé tri que de muni d'une métrique riemannienne périodique, et des conséquences pour le problème de la forme d'équilibre des cristaux.
Fix two points and two directions (without orientation) of the velocities in these points. In this paper we are interested to the problem of minimizing the cost along all smooth curves starting from x with direction η and ending in with direction . Here g is the standard Riemannian metric on S2 and is the corresponding geodesic curvature. The interest of this problem comes from mechanics and geometry of vision. It can be formulated as a sub-Riemannian problem on the lens space L(4,1). We...