Partitioning Euclidean Space.
J.H. Schmerl (1993)
Discrete & computational geometry
Vadim Schechtman (2013)
Annales de la faculté des sciences de Toulouse Mathématiques
We give an exposition of unpublished fragments of Gauss where he discovered (using a work of Jacobi) a remarkable connection between Napier pentagons on the sphere and Poncelet pentagons on the plane. As a corollary we find a parametrization in elliptic functions of the classical dilogarithm five-term relation.
De Clerck, Frank, Delanote, Mario, Hamilton, Nicholas, Mathon, Rudolf (2002)
Advances in Geometry
Christoph Hering, Michael Walker (1977)
Mathematische Zeitschrift
Helmut Mäurer (1978/1979)
Mathematische Zeitschrift
Hubard, Isabel, Schulte, Egon, Weiss, Asia Ivić (2006)
Beiträge zur Algebra und Geometrie
Jiménez, Douglas (2008)
Divulgaciones Matemáticas
V. Chvàl (1971)
Rendiconti del Seminario Matematico della Università di Padova
Guglielmo Lunardon (1979)
Rendiconti del Seminario Matematico della Università di Padova
Alena Vanžurová (1981)
Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika
W. Kuperberg (1991)
Elemente der Mathematik
Otto Bachmann (1972)
Mathematische Zeitschrift
Lang, Johann (1995)
Mathematica Pannonica
Polster, B., Schroth, A.E. (1998)
Beiträge zur Algebra und Geometrie
Herbert Busemann (1975)
Mathematica Scandinavica
Tran van Trung (1980)
Mathematische Zeitschrift
Zdeněk Pírko (1946)
Časopis pro pěstování matematiky a fysiky
G.L. Mullen, G. Whittle (1992)
Monatshefte für Mathematik
Graham Smith (2006)
Bulletin de la Société Mathématique de France
Let be a Riemann surface. Let be the -dimensional hyperbolic space and let be its ideal boundary. In our context, a Plateau problem is a locally holomorphic mapping . If is a convex immersion, and if is its exterior normal vector field, we define the Gauss lifting, , of by . Let be the Gauss-Minkowski mapping. A solution to the Plateau problem is a convex immersion of constant Gaussian curvature equal to such that the Gauss lifting is complete and . In this paper, we show...
Kasikova, Anna, Shult, Ernest (2002)
Advances in Geometry