A measure of asymmetry for domains of constant width.
Denote by Kₘ the mirror image of a planar convex body K in a straight line m. It is easy to show that K*ₘ = conv(K ∪ Kₘ) is the smallest by inclusion convex body whose axis of symmetry is m and which contains K. The ratio axs(K) of the area of K to the minimum area of K*ₘ over all straight lines m is a measure of axial symmetry of K. We prove that axs(K) > 1/2√2 for every centrally symmetric convex body and that this estimate cannot be improved in general. We also give a formula for axs(P) for...
The least concave majorant, , of a continuous function on a closed interval, , is defined by We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on . Given any function , it can be well-approximated on by a clamped cubic spline . We show that is then a good approximation to . We give two examples, one to illustrate, the other to apply our algorithm.
In this paper we prove a new convexity property for L₁ that resembles uniform convexity. We then develop a general theory that leads from the convexity property through normal structure to a fixed point property, via a theorem of Kirk. Applying this theory to L₁, we get the following type of normal structure: any convex subset of L₁ of positive diameter that is compact for the topology of convergence locally in measure, must have a radius that is smaller than its diameter. Indeed, a stronger result...
We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review 49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.
We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.