Displaying 1541 – 1560 of 2522

Showing per page

On unit balls and isoperimetrices in normed spaces

Horst Martini, Zokhrab Mustafaev (2012)

Colloquium Mathematicae

The purpose of this paper is to continue the investigations on the homothety of unit balls and isoperimetrices in higher-dimensional Minkowski spaces for the Holmes-Thompson measure and the Busemann measure. Moreover, we show a strong relation between affine isoperimetric inequalities and Minkowski geometry by proving some new related inequalities.

On Weak Tail Domination of Random Vectors

Rafał Latała (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Motivated by a question of Krzysztof Oleszkiewicz we study a notion of weak tail domination of random vectors. We show that if the dominating random variable is sufficiently regular then weak tail domination implies strong tail domination. In particular, a positive answer to Oleszkiewicz's question would follow from the so-called Bernoulli conjecture. We also prove that any unconditional logarithmically concave distribution is strongly dominated by a product symmetric exponential measure.

On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions

S. Rolewicz (1999)

Studia Mathematica

Let (X,d) be a metric space. Let Φ be a family of real-valued functions defined on X. Sufficient conditions are given for an α(·)-monotone multifunction Γ : X 2 Φ to be single-valued and continuous on a weakly angle-small set. As an application it is shown that a γ-paraconvex function defined on an open convex subset of a Banach space having separable dual is Fréchet differentiable on a residual set.

One-adhesive polymatroids

Laszlo Csirmaz (2020)

Kybernetika

Adhesive polymatroids were defined by F. Matúš motivated by entropy functions. Two polymatroids are adhesive if they can be glued together along their joint part in a modular way; and are one-adhesive, if one of them has a single point outside their intersection. It is shown that two polymatroids are one-adhesive if and only if two closely related polymatroids have joint extension. Using this result, adhesive polymatroid pairs on a five-element set are characterized.

On-line Covering the Unit Square with Squares

Janusz Januszewski (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

The unit square can be on-line covered with any sequence of squares whose total area is not smaller than 4.

On-line packing regular boxes in the unit cube

Janusz Januszewski (1999)

Archivum Mathematicum

We describe a class of boxes such that every sequence of boxes from this class of total volume smaller than or equal to 1 can be on-line packed in the unit cube.

On-line Packing Squares into n Unit Squares

Janusz Januszewski (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

If n ≥ 3, then any sequence of squares of side lengths not greater than 1 whose total area does not exceed ¼(n+1) can be on-line packed into n unit squares.

Opérades cellulaires et espaces de lacets itérés

Clemens Berger (1996)

Annales de l'institut Fourier

L’espace des configurations de p points distincts de R admet une filtration naturelle qui est induite par les inclusions des R n dans R . Nous caractérisons le type d’homotopie de cette filtration par les propriétés combinatoires d’une structure cellulaire sous-jacente, étroitement liée à la théorie des E n -opérades de May. Cela donne une approche unifiée des différents modèles combinatoires d’espaces de lacets itérés et redémontre les théorèmes d’approximation de Milgram, Smith et Kashiwabara.

Opérades différentielles graduées sur les simplexes et les permutoèdres

Frédéric Chapoton (2002)

Bulletin de la Société Mathématique de France

On définit plusieurs opérades différentielles graduées, dont certaines en relation avec des familles de polytopes : les simplexes et les permutoèdres. On obtient également une présentation de l’opérade K liée aux associaèdres introduite dans un article antérieur.

Operations between sets in geometry

Richard J. Gardner, Daniel Hug, Wolfgang Weil (2013)

Journal of the European Mathematical Society

An investigation is launched into the fundamental characteristics of operations on and between sets, with a focus on compact convex sets and star sets (compact sets star-shaped with respect to the origin) in n -dimensional Euclidean space n . It is proved that if n 2 , with three trivial exceptions, an operation between origin-symmetric compact convex sets is continuous in the Hausdorff metric, G L ( n ) covariant, and associative if and only if it is L p addition for some 1 p . It is also demonstrated that if n 2 ,...

Opérations sur les cartes et métamorphoses de la catégorie des G-ensembles.

Christian Léger (1991)

Revista Matemática de la Universidad Complutense de Madrid

We call metamorphosis of a given category an autoequivalence functor up to within natural equivalence. We show that, given a group G, the group of metamorphoses of the category of G-sets (as well as the corresponding group for ?sufficiently big? subcategories) may be naturally identified to the group of outer automorphism of G. We get by this way a natural description of a group of known operations on tessellations of a surface: the identity operation, the Poincaré duality, and four others which...

Currently displaying 1541 – 1560 of 2522