The metrics of a twodimensional space with geodesics represented by a linear equation
We introduce the modular class of a Poisson map. We look at several examples and we use the modular classes of Poisson maps to study the behavior of the modular class of a Poisson manifold under different kinds of reduction. We also discuss their symplectic groupoid version, which lives in groupoid cohomology.
We study upper bounds on the length functional along contractions of loops in Riemannian disks of bounded diameter and circumference. By constructing metrics adapted to imbedded trees of increasing complexity, we reduce the nonexistence of such upper bounds to the study of a topological invariant of imbedded finite trees. This invariant is related to the complexity of the binary representation of integers. It is also related to lower bounds on the number of points in level sets of a real-valued...
A strictly short embedding is an embedding of a Riemannian manifold into an Euclidean space that strictly shortens distances. From such an embedding, the Nash-Kuiper process builds a sequence of maps converging toward an isometric embedding. In that paper, we describe this Nash-Kuiper process in the case of curves. We state an explicit formula for the limit normal map and perform its Fourier series expansion. We then adress the question of Holder regularity of the limit map.
For natural numbers and a complete classification of natural affinors on the natural bundle dual to -jet prolongation of the cotangent bundle over -manifolds is given.
For natural numbers r,s,q,m,n with s≥r≤q we determine all natural functions g: T *(J (r,s,q)(Y, R 1,1)0)*→R for any fibered manifold Y with m-dimensional base and n-dimensional fibers. For natural numbers r,s,m,n with s≥r we determine all natural functions g: T *(J (r,s)(Y, R)0)*→R for any Y as above.
We prove that the problem of finding all -natural operators lifting classical linear connections on -manifolds into classical linear connections on the -th order cotangent bundle of can be reduced to the well known one of describing all -natural operators sending classical linear connections on -manifolds into tensor fields of type on .
For natural numbers and and a real number we construct a natural vector bundle over -manifolds such that is the (classical) vector tangent bundle of order . For integers and and a real number we classify all natural operators lifting vector fields from -manifolds to .
For integers and a complete classification of all natural operators lifting vector fields to vector fields on the natural bundle dual to -jet prolongation of the cotangent bundle over -manifolds is given.
All natural operators T ↝ T(T ⊗ T*) lifting vector fields X from n-dimensional manifolds M to vector fields B(X) on the bundle of affinors ™ ⊗ T*M are described.
We study the problem of how a map f:M → ℝ on an n-manifold M induces canonically an affinor on the vector r-tangent bundle over M. This problem is reflected in the concept of natural operators . For integers r ≥ 1 and n ≥ 2 we prove that the space of all such operators is a free (r+1)²-dimensional module over and we construct explicitly a basis of this module.
For natural numbers and a complete classification of natural transformations over -manifolds is given, where is the linear -tangent bundle functor.