Volume and bounded cohomology
We consider the distance to compact submanifolds and study volume comparison for tubular neighborhoods of compact submanifolds. As applications, we obtain a lower bound for the length of a closed geodesic of a compact Finsler manifold. When the Finsler metric is reversible, we also provide a lower bound of the injectivity radius. Our results are Finsler versions of Heintze-Karcher's and Cheeger's results for Riemannian manifolds.
In this paper, for complete Riemannian manifolds with radial Ricci or sectional curvature bounded from below or above, respectively, with respect to some point, we prove several volume comparison theorems, which can be seen as extensions of already existing results. In fact, under this radial curvature assumption, the model space is the spherically symmetric manifold, which is also called the generalized space form, determined by the bound of the radial curvature, and moreover, volume comparisons...
Nous étudions des analogues en dimension supérieure de l’inégalité de Burago , avec une surface fermée de classe immergée dans , son aire et sa courbure totale. Nous donnons un exemple explicite qui prouve qu’une inégalité analogue de la forme , avec une constante, ne peut être vraie pour une hypersurface fermée de classe dans , . Nous mettons toutefois en évidence une condition suffisante sur la courbure de Ricci sous laquelle l’inégalité est vérifiée en dimension . En dimension...
Let be a compactly generated locally compact group and let be a compact generating set. We prove that if has polynomial growth, then is a Følner sequence and we give a polynomial estimate of the rate of decay of Our proof uses only two ingredients: the doubling property and a weak geodesic property that we call Property (M). As a matter of fact, the result remains true in a wide class of doubling metric measured spaces including manifolds and graphs. As an application, we obtain a -pointwise...
We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross–Pitaevskii (GP) equation in dimension . We also extend the asymptotic analysis of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if ).