Simultaneous unitarizability of SL-valued maps, and constant mean curvature k-noid monodromy
We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of -noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic -spaces.
Singularities of lightcone pedals of spacelike curves in Lorentz-Minkowski 3-space
In this paper, geometric properties of spacelike curves on a timelike surface in Lorentz-Minkowski 3-space are investigated by applying the singularity theory of smooth functions from the contact viewpoint.
Some characterizations of rectifying curves in the Minkowski 3-space.
Some geometrical properties of marginally trapped surfaces in Minkowski space
Some trigonometric relations in the Lorentzian plane
Spacelike intersection curve of three spacelike hypersurfaces in E41
In this paper, we compute the Frenet vectors and the curvatures of the spacelike intersection curve of three spacelike hypersurfaces given by their parametric equations in four-dimensional Minkowski space E41.
Spacelike Salkowski and anti-Salkowski curves with a spacelike principal normal in Minkowski 3-space.
Sphères à courbure moyenne constante et problème isopérimétrique dans les variétés homogènes
Nous passons en revue certains résultats récents sur l’existence et l’unicité des sphères à courbure moyenne constante dans les variétés riemanniennes homogènes simplement connexes de dimension et leurs liens avec le problème isopérimétrique dans ces variétés.
Stochastic bilinear equations with fractional Gaussian noise in Hilbert space
Strengthened Moser’s conjecture, geometry of Grunsky coefficients and Fredholm eigenvalues
The Grunsky and Teichmüller norms ϰ(f) and k(f) of a holomorphic univalent function f in a finitely connected domain D ∋ ∞ with quasiconformal extension to are related by ϰ(f) ≤ k(f). In 1985, Jürgen Moser conjectured that any univalent function in the disk Δ* = z: |z| > 1 can be approximated locally uniformly by functions with ϰ(f) < k(f). This conjecture has been recently proved by R. Kühnau and the author. In this paper, we prove that approximation is possible in a stronger sense, namely,...
Sur les surfaces de révolution à courbure moyenne constante dans l'espace hyperbolique