Page 1 Next

Displaying 1 – 20 of 50

Showing per page

La conjecture des soufflets

Jean-Marc Schlenker (2002/2003)

Séminaire Bourbaki

On sait depuis les travaux de Bricard et de Connelly qu’il existe dans l’espace euclidien des polyèdres (non convexes) qui sont flexibles : on peut les déformer continûment sans changer la forme de leurs faces. La conjecture des soufflets affirme que le volume interieur de ces polyèdres est constant au cours de la déformation. Elle a été démontrée récemment par I. Sabitov, qui a pour cela utilisé des outils algébriques inattendus dans ce contexte.

Lagrangians and Euler morphisms on fibered-fibered frame bundles from projectable-projectable classical linear connections

Anna Bednarska (2011)

Annales UMCS, Mathematica

We classify all F2Mm1, m2, n1, n2-natural operators Atransforming projectable-projectable torsion-free classical linear connections ∇ on fibered-fibered manifolds Y of dimension (m1,m2, n1, n2) into rth order Lagrangians A(∇) on the fibered-fibered linear frame bundle Lfib-fib(Y) on Y. Moreover, we classify all F2Mm1, m2, n1, n2-natural operators B transforming projectable-projectable torsion-free classical linear connections ∇ on fiberedfibered manifolds Y of dimension (m1, m2, n1, n2) into Euler...

Laguerresche Differentialgeometrie und Kinematik

Zdeněk Jankovský (1995)

Mathematica Bohemica

In this paper the plane Laguerre’s geometry in the augmented plane of dual numbers is presented. Basic integral and differential invariants of -curves in the plane are deduced, i.e. the -curve arc, -curvature, -minimal curves, -circle. Furthermore the contact of -curves, -osculating circle, -evolute of a curve and some special -motions are studied from the point of view of -Differential geometry.

Legendrian dual surfaces in hyperbolic 3-space

Kentaro Saji, Handan Yıldırım (2015)

Annales Polonici Mathematici

We consider surfaces in hyperbolic 3-space and their duals. We study flat dual surfaces in hyperbolic 3-space by using extended Legendrian dualities between pseudo-hyperspheres in Lorentz-Minkowski 4-space. We define the flatness of a surface in hyperbolic 3-space by the degeneracy of its dual, which is similar to the case of the Gauss map of a surface in Euclidean 3-space. Such surfaces are a kind of ruled surfaces. Moreover, we investigate the singularities of these surfaces and the dualities...

Les géométries de Hilbert sont à géométrie locale bornée

Bruno Colbois, Constantin Vernicos (2007)

Annales de l’institut Fourier

On montre que la géométrie de Hilbert d’un domaine convexe de n est à géométrie locale bornée c-à-d que pour un rayon fixé, toutes les boules sont bilipschitz à un domaine de n euclidien. On en déduit que si la géométrie de Hilbert est hyperbolique au sens de Gromov, alors le bas de son spectre est strictement positif. On donne un contre-exemple en dimension trois qui montre que la réciproque n’est pas vraie pour les géométries de Hilbert non planes.

Liftings of 1 -forms to the linear r -tangent bundle

Włodzimierz M. Mikulski (1995)

Archivum Mathematicum

Let r , n be fixed natural numbers. We prove that for n -manifolds the set of all linear natural operators T * T * T ( r ) is a finitely dimensional vector space over R . We construct explicitly the bases of the vector spaces. As a corollary we find all linear natural operators T * T r * .

Currently displaying 1 – 20 of 50

Page 1 Next