Mannheim offsets of ruled surfaces.
The notion of principal configuration of immersions of surfaces into R3, due to Sotomayor and Gutierrez [16] for lines of curvature and umbilics, is extended to that of mean directional configuration for immersed surfaces in R4. This configuration consists on the families of mean directionally curved lines, along which the second fundamental form points in the direction of the mean curvature vector, and their singularities, called here H-singularities.
Nous étudions les métriques riemanniennes holomorphes sur les variétés complexes compactes de dimension . Nous montrons que, contrairement au cas réel, une métrique riemannienne holomorphe possède un “grand” pseudo-groupe d’isométries locales. Ceci implique qu’une telle métrique n’existe pas sur les variétés complexes compactes simplement connexes de dimension .