Solution d'un problème de géométrie
The authors prove that a local n-quasigroup defined by the equation , where , i,j = 1,...,n, are arbitrary functions, is irreducible if and only if any two functions and , i ≠ j, are not both linear homogeneous, or these functions are linear homogeneous but . This gives a solution of Belousov’s problem to construct examples of irreducible n-quasigroups for any n ≥ 3.
Si considerano due spazi e , Riemanniani e a metrica eventualmente indefinita, riferiti a sistemi di co-ordinate e ; e inoltre un doppio tensore associato ai punti e . Si pensa dato da una funzione di altri tali doppi tensori e di variabili puntuali , e ; poi si considera la funzione composta Nella Parte I si scrivono due regole per eseguire la derivazione totale di questa, connessa con una mappa
In this paper some properties of an immersion of two-dimensional surface with boundary into are studied. The main tool is the maximal principle property of a solution of the elliptic system of partial differential equations. Some conditions for a surface to be a part of a 2-dimensional spheren in are presented.