Displaying 41 – 60 of 202

Showing per page

Solution géométrique

A. Genty (1876)

Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale

Solution of Belousov's problem

Maks A. Akivis, Vladislav V. Goldberg (2001)

Discussiones Mathematicae - General Algebra and Applications

The authors prove that a local n-quasigroup defined by the equation x n + 1 = F ( x , . . . , x ) = ( f ( x ) + . . . + f ( x ) ) / ( x + . . . + x ) , where f i ( x i ) , i,j = 1,...,n, are arbitrary functions, is irreducible if and only if any two functions f i ( x i ) and f j ( x j ) , i ≠ j, are not both linear homogeneous, or these functions are linear homogeneous but f i ( x i ) / x i f j ( x j ) / x j . This gives a solution of Belousov’s problem to construct examples of irreducible n-quasigroups for any n ≥ 3.

Some chain rules for certain derivatives of double tensors depending on other such tensors and some point variables. I. On the pseudo-total derivative

Aldo Bressan (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considerano due spazi S μ e S ν , Riemanniani e a metrica eventualmente indefinita, riferiti a sistemi di co-ordinate e ν ; e inoltre un doppio tensore T associato ai punti - 1 ( x ) S μ e - 1 ( y ) S . Si pensa T dato da una funzione T ~ di m altri tali doppi tensori e di variabili puntuali x ( μ ) , t e y ( ν ) ; poi si considera la funzione composta T ^ ( x , t , y ) = T ~ [ H ˘ ( x , t , y ) , , H ˘ ( x , t , y ) 1 , , m , x , t , y ] . Nella Parte I si scrivono due regole per eseguire la derivazione totale di questa, connessa con una mappa ^

Some conditions for a surface in E s p 4 to be a part of the sphere S s p 2

Jarolím Bureš, Miloš Kaňka (1994)

Mathematica Bohemica

In this paper some properties of an immersion of two-dimensional surface with boundary into E s p 4 are studied. The main tool is the maximal principle property of a solution of the elliptic system of partial differential equations. Some conditions for a surface to be a part of a 2-dimensional spheren in E s p 4 are presented.

Currently displaying 41 – 60 of 202